File size: 23,425 Bytes
4a98549 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
# Copyright (c) 2023, Tri Dao.
import sys
import warnings
import os
import re
import ast
import glob
import shutil
from pathlib import Path
from packaging.version import parse, Version
import platform
from setuptools import setup, find_packages
import subprocess
import urllib.request
import urllib.error
from wheel.bdist_wheel import bdist_wheel as _bdist_wheel
import torch
from torch.utils.cpp_extension import (
BuildExtension,
CppExtension,
CUDAExtension,
CUDA_HOME,
ROCM_HOME,
IS_HIP_EXTENSION,
)
with open("README.md", "r", encoding="utf-8") as fh:
long_description = fh.read()
# ninja build does not work unless include_dirs are abs path
this_dir = os.path.dirname(os.path.abspath(__file__))
BUILD_TARGET = os.environ.get("BUILD_TARGET", "auto")
if BUILD_TARGET == "auto":
if IS_HIP_EXTENSION:
IS_ROCM = True
else:
IS_ROCM = False
else:
if BUILD_TARGET == "cuda":
IS_ROCM = False
elif BUILD_TARGET == "rocm":
IS_ROCM = True
PACKAGE_NAME = "flash_attn"
BASE_WHEEL_URL = (
"https://github.com/Dao-AILab/flash-attention/releases/download/{tag_name}/{wheel_name}"
)
# FORCE_BUILD: Force a fresh build locally, instead of attempting to find prebuilt wheels
# SKIP_CUDA_BUILD: Intended to allow CI to use a simple `python setup.py sdist` run to copy over raw files, without any cuda compilation
FORCE_BUILD = os.getenv("FLASH_ATTENTION_FORCE_BUILD", "FALSE") == "TRUE"
SKIP_CUDA_BUILD = os.getenv("FLASH_ATTENTION_SKIP_CUDA_BUILD", "FALSE") == "TRUE"
# For CI, we want the option to build with C++11 ABI since the nvcr images use C++11 ABI
FORCE_CXX11_ABI = os.getenv("FLASH_ATTENTION_FORCE_CXX11_ABI", "FALSE") == "TRUE"
def get_platform():
"""
Returns the platform name as used in wheel filenames.
"""
if sys.platform.startswith("linux"):
return f'linux_{platform.uname().machine}'
elif sys.platform == "darwin":
mac_version = ".".join(platform.mac_ver()[0].split(".")[:2])
return f"macosx_{mac_version}_x86_64"
elif sys.platform == "win32":
return "win_amd64"
else:
raise ValueError("Unsupported platform: {}".format(sys.platform))
def get_cuda_bare_metal_version(cuda_dir):
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
output = raw_output.split()
release_idx = output.index("release") + 1
bare_metal_version = parse(output[release_idx].split(",")[0])
return raw_output, bare_metal_version
def check_if_cuda_home_none(global_option: str) -> None:
if CUDA_HOME is not None:
return
# warn instead of error because user could be downloading prebuilt wheels, so nvcc won't be necessary
# in that case.
warnings.warn(
f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? "
"If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
"only images whose names contain 'devel' will provide nvcc."
)
def check_if_rocm_home_none(global_option: str) -> None:
if ROCM_HOME is not None:
return
# warn instead of error because user could be downloading prebuilt wheels, so hipcc won't be necessary
# in that case.
warnings.warn(
f"{global_option} was requested, but hipcc was not found."
)
def append_nvcc_threads(nvcc_extra_args):
nvcc_threads = os.getenv("NVCC_THREADS") or "4"
return nvcc_extra_args + ["--threads", nvcc_threads]
def rename_cpp_to_cu(cpp_files):
for entry in cpp_files:
shutil.copy(entry, os.path.splitext(entry)[0] + ".cu")
def validate_and_update_archs(archs):
# List of allowed architectures
allowed_archs = ["native", "gfx90a", "gfx940", "gfx941", "gfx942"]
# Validate if each element in archs is in allowed_archs
assert all(
arch in allowed_archs for arch in archs
), f"One of GPU archs of {archs} is invalid or not supported by Flash-Attention"
cmdclass = {}
ext_modules = []
# We want this even if SKIP_CUDA_BUILD because when we run python setup.py sdist we want the .hpp
# files included in the source distribution, in case the user compiles from source.
if IS_ROCM:
subprocess.run(["git", "submodule", "update", "--init", "csrc/composable_kernel"])
else:
subprocess.run(["git", "submodule", "update", "--init", "csrc/cutlass"])
if not SKIP_CUDA_BUILD and not IS_ROCM:
print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__))
TORCH_MAJOR = int(torch.__version__.split(".")[0])
TORCH_MINOR = int(torch.__version__.split(".")[1])
# Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h
# See https://github.com/pytorch/pytorch/pull/70650
generator_flag = []
torch_dir = torch.__path__[0]
if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")):
generator_flag = ["-DOLD_GENERATOR_PATH"]
check_if_cuda_home_none("flash_attn")
# Check, if CUDA11 is installed for compute capability 8.0
cc_flag = []
if CUDA_HOME is not None:
_, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
if bare_metal_version < Version("11.6"):
raise RuntimeError(
"FlashAttention is only supported on CUDA 11.6 and above. "
"Note: make sure nvcc has a supported version by running nvcc -V."
)
# cc_flag.append("-gencode")
# cc_flag.append("arch=compute_75,code=sm_75")
cc_flag.append("-gencode")
cc_flag.append("arch=compute_80,code=sm_80")
if CUDA_HOME is not None:
if bare_metal_version >= Version("11.8"):
cc_flag.append("-gencode")
cc_flag.append("arch=compute_90,code=sm_90")
# HACK: The compiler flag -D_GLIBCXX_USE_CXX11_ABI is set to be the same as
# torch._C._GLIBCXX_USE_CXX11_ABI
# https://github.com/pytorch/pytorch/blob/8472c24e3b5b60150096486616d98b7bea01500b/torch/utils/cpp_extension.py#L920
if FORCE_CXX11_ABI:
torch._C._GLIBCXX_USE_CXX11_ABI = True
ext_modules.append(
CUDAExtension(
name="flash_attn_2_cuda",
sources=[
"csrc/flash_attn/flash_api.cpp",
"csrc/flash_attn/src/flash_fwd_hdim32_fp16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim32_bf16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim64_fp16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim64_bf16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim96_fp16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim96_bf16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim128_fp16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim128_bf16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim160_fp16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim160_bf16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim192_fp16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim192_bf16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim256_fp16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim256_bf16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim32_fp16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim32_bf16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim64_fp16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim64_bf16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim96_fp16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim96_bf16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim128_fp16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim128_bf16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim160_fp16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim160_bf16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim192_fp16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim192_bf16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim256_fp16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_hdim256_bf16_causal_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim32_fp16_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim32_bf16_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim64_fp16_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim64_bf16_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim96_fp16_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim96_bf16_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim128_fp16_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim128_bf16_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim160_fp16_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim160_bf16_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim192_fp16_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim192_bf16_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim256_fp16_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim256_bf16_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim32_fp16_causal_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim32_bf16_causal_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim64_fp16_causal_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim64_bf16_causal_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim96_fp16_causal_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim96_bf16_causal_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim128_fp16_causal_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim128_bf16_causal_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim160_fp16_causal_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim160_bf16_causal_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim192_fp16_causal_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim192_bf16_causal_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim256_fp16_causal_sm80.cu",
"csrc/flash_attn/src/flash_bwd_hdim256_bf16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim32_fp16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim32_bf16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim64_fp16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim64_bf16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim96_fp16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim96_bf16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim128_fp16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim128_bf16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim160_fp16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim160_bf16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim192_fp16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim192_bf16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim256_fp16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim256_bf16_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim32_fp16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim32_bf16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim64_fp16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim64_bf16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim96_fp16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim96_bf16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim128_fp16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim128_bf16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim160_fp16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim160_bf16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim192_fp16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim192_bf16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim256_fp16_causal_sm80.cu",
"csrc/flash_attn/src/flash_fwd_split_hdim256_bf16_causal_sm80.cu",
],
extra_compile_args={
"cxx": ["-O3", "-std=c++17"] + generator_flag,
"nvcc": append_nvcc_threads(
[
"-O3",
"-std=c++17",
"-U__CUDA_NO_HALF_OPERATORS__",
"-U__CUDA_NO_HALF_CONVERSIONS__",
"-U__CUDA_NO_HALF2_OPERATORS__",
"-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
"--expt-relaxed-constexpr",
"--expt-extended-lambda",
"--use_fast_math",
# "--ptxas-options=-v",
# "--ptxas-options=-O2",
# "-lineinfo",
# "-DFLASHATTENTION_DISABLE_BACKWARD",
# "-DFLASHATTENTION_DISABLE_DROPOUT",
# "-DFLASHATTENTION_DISABLE_ALIBI",
# "-DFLASHATTENTION_DISABLE_SOFTCAP",
# "-DFLASHATTENTION_DISABLE_UNEVEN_K",
# "-DFLASHATTENTION_DISABLE_LOCAL",
]
+ generator_flag
+ cc_flag
),
},
include_dirs=[
Path(this_dir) / "csrc" / "flash_attn",
Path(this_dir) / "csrc" / "flash_attn" / "src",
Path(this_dir) / "csrc" / "cutlass" / "include",
],
)
)
elif not SKIP_CUDA_BUILD and IS_ROCM:
ck_dir = "csrc/composable_kernel"
#use codegen get code dispatch
if not os.path.exists("./build"):
os.makedirs("build")
os.system(f"{sys.executable} {ck_dir}/example/ck_tile/01_fmha/generate.py -d fwd --output_dir build --receipt 2")
os.system(f"{sys.executable} {ck_dir}/example/ck_tile/01_fmha/generate.py -d bwd --output_dir build --receipt 2")
print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__))
TORCH_MAJOR = int(torch.__version__.split(".")[0])
TORCH_MINOR = int(torch.__version__.split(".")[1])
# Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h
# See https://github.com/pytorch/pytorch/pull/70650
generator_flag = []
torch_dir = torch.__path__[0]
if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")):
generator_flag = ["-DOLD_GENERATOR_PATH"]
check_if_rocm_home_none("flash_attn")
cc_flag = []
archs = os.getenv("GPU_ARCHS", "native").split(";")
validate_and_update_archs(archs)
cc_flag = [f"--offload-arch={arch}" for arch in archs]
# HACK: The compiler flag -D_GLIBCXX_USE_CXX11_ABI is set to be the same as
# torch._C._GLIBCXX_USE_CXX11_ABI
# https://github.com/pytorch/pytorch/blob/8472c24e3b5b60150096486616d98b7bea01500b/torch/utils/cpp_extension.py#L920
if FORCE_CXX11_ABI:
torch._C._GLIBCXX_USE_CXX11_ABI = True
sources = ["csrc/flash_attn_ck/flash_api.cpp",
"csrc/flash_attn_ck/mha_bwd.cpp",
"csrc/flash_attn_ck/mha_fwd.cpp",
"csrc/flash_attn_ck/mha_varlen_bwd.cpp",
"csrc/flash_attn_ck/mha_varlen_fwd.cpp"] + glob.glob(
f"build/fmha_*wd*.cpp"
)
rename_cpp_to_cu(sources)
renamed_sources = ["csrc/flash_attn_ck/flash_api.cu",
"csrc/flash_attn_ck/mha_bwd.cu",
"csrc/flash_attn_ck/mha_fwd.cu",
"csrc/flash_attn_ck/mha_varlen_bwd.cu",
"csrc/flash_attn_ck/mha_varlen_fwd.cu"] + glob.glob(f"build/fmha_*wd*.cu")
extra_compile_args = {
"cxx": ["-O3", "-std=c++17"] + generator_flag,
"nvcc":
[
"-O3","-std=c++17",
"-mllvm", "-enable-post-misched=0",
"-DCK_TILE_FMHA_FWD_FAST_EXP2=1",
"-fgpu-flush-denormals-to-zero",
"-DCK_ENABLE_BF16",
"-DCK_ENABLE_BF8",
"-DCK_ENABLE_FP16",
"-DCK_ENABLE_FP32",
"-DCK_ENABLE_FP64",
"-DCK_ENABLE_FP8",
"-DCK_ENABLE_INT8",
"-DCK_USE_XDL",
"-DUSE_PROF_API=1",
"-D__HIP_PLATFORM_HCC__=1",
# "-DFLASHATTENTION_DISABLE_BACKWARD",
]
+ generator_flag
+ cc_flag
,
}
include_dirs = [
Path(this_dir) / "csrc" / "composable_kernel" / "include",
Path(this_dir) / "csrc" / "composable_kernel" / "library" / "include",
Path(this_dir) / "csrc" / "composable_kernel" / "example" / "ck_tile" / "01_fmha",
]
ext_modules.append(
CUDAExtension(
name="flash_attn_2_cuda",
sources=renamed_sources,
extra_compile_args=extra_compile_args,
include_dirs=include_dirs,
)
)
def get_package_version():
with open(Path(this_dir) / "flash_attn" / "__init__.py", "r") as f:
version_match = re.search(r"^__version__\s*=\s*(.*)$", f.read(), re.MULTILINE)
public_version = ast.literal_eval(version_match.group(1))
local_version = os.environ.get("FLASH_ATTN_LOCAL_VERSION")
if local_version:
return f"{public_version}+{local_version}"
else:
return str(public_version)
def get_wheel_url():
torch_version_raw = parse(torch.__version__)
python_version = f"cp{sys.version_info.major}{sys.version_info.minor}"
platform_name = get_platform()
flash_version = get_package_version()
torch_version = f"{torch_version_raw.major}.{torch_version_raw.minor}"
cxx11_abi = str(torch._C._GLIBCXX_USE_CXX11_ABI).upper()
if IS_ROCM:
torch_hip_version = parse(torch.version.hip.split()[-1].rstrip('-').replace('-', '+'))
hip_version = f"{torch_hip_version.major}{torch_hip_version.minor}"
wheel_filename = f"{PACKAGE_NAME}-{flash_version}+rocm{hip_version}torch{torch_version}cxx11abi{cxx11_abi}-{python_version}-{python_version}-{platform_name}.whl"
else:
# Determine the version numbers that will be used to determine the correct wheel
# We're using the CUDA version used to build torch, not the one currently installed
# _, cuda_version_raw = get_cuda_bare_metal_version(CUDA_HOME)
torch_cuda_version = parse(torch.version.cuda)
# For CUDA 11, we only compile for CUDA 11.8, and for CUDA 12 we only compile for CUDA 12.3
# to save CI time. Minor versions should be compatible.
torch_cuda_version = parse("11.8") if torch_cuda_version.major == 11 else parse("12.3")
# cuda_version = f"{cuda_version_raw.major}{cuda_version_raw.minor}"
cuda_version = f"{torch_cuda_version.major}{torch_cuda_version.minor}"
# Determine wheel URL based on CUDA version, torch version, python version and OS
wheel_filename = f"{PACKAGE_NAME}-{flash_version}+cu{cuda_version}torch{torch_version}cxx11abi{cxx11_abi}-{python_version}-{python_version}-{platform_name}.whl"
wheel_url = BASE_WHEEL_URL.format(tag_name=f"v{flash_version}", wheel_name=wheel_filename)
return wheel_url, wheel_filename
class CachedWheelsCommand(_bdist_wheel):
"""
The CachedWheelsCommand plugs into the default bdist wheel, which is ran by pip when it cannot
find an existing wheel (which is currently the case for all flash attention installs). We use
the environment parameters to detect whether there is already a pre-built version of a compatible
wheel available and short-circuits the standard full build pipeline.
"""
def run(self):
if FORCE_BUILD:
return super().run()
wheel_url, wheel_filename = get_wheel_url()
print("Guessing wheel URL: ", wheel_url)
try:
urllib.request.urlretrieve(wheel_url, wheel_filename)
# Make the archive
# Lifted from the root wheel processing command
# https://github.com/pypa/wheel/blob/cf71108ff9f6ffc36978069acb28824b44ae028e/src/wheel/bdist_wheel.py#LL381C9-L381C85
if not os.path.exists(self.dist_dir):
os.makedirs(self.dist_dir)
impl_tag, abi_tag, plat_tag = self.get_tag()
archive_basename = f"{self.wheel_dist_name}-{impl_tag}-{abi_tag}-{plat_tag}"
wheel_path = os.path.join(self.dist_dir, archive_basename + ".whl")
print("Raw wheel path", wheel_path)
os.rename(wheel_filename, wheel_path)
except (urllib.error.HTTPError, urllib.error.URLError):
print("Precompiled wheel not found. Building from source...")
# If the wheel could not be downloaded, build from source
super().run()
class NinjaBuildExtension(BuildExtension):
def __init__(self, *args, **kwargs) -> None:
# do not override env MAX_JOBS if already exists
if not os.environ.get("MAX_JOBS"):
import psutil
# calculate the maximum allowed NUM_JOBS based on cores
max_num_jobs_cores = max(1, os.cpu_count() // 2)
# calculate the maximum allowed NUM_JOBS based on free memory
free_memory_gb = psutil.virtual_memory().available / (1024 ** 3) # free memory in GB
max_num_jobs_memory = int(free_memory_gb / 9) # each JOB peak memory cost is ~8-9GB when threads = 4
# pick lower value of jobs based on cores vs memory metric to minimize oom and swap usage during compilation
max_jobs = max(1, min(max_num_jobs_cores, max_num_jobs_memory))
os.environ["MAX_JOBS"] = str(max_jobs)
super().__init__(*args, **kwargs)
setup(
name=PACKAGE_NAME,
version=get_package_version(),
packages=find_packages(
exclude=(
"build",
"csrc",
"include",
"tests",
"dist",
"docs",
"benchmarks",
"flash_attn.egg-info",
)
),
author="Tri Dao",
author_email="tri@tridao.me",
description="Flash Attention: Fast and Memory-Efficient Exact Attention",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/Dao-AILab/flash-attention",
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: BSD License",
"Operating System :: Unix",
],
ext_modules=ext_modules,
cmdclass={"bdist_wheel": CachedWheelsCommand, "build_ext": NinjaBuildExtension}
if ext_modules
else {
"bdist_wheel": CachedWheelsCommand,
},
python_requires=">=3.8",
install_requires=[
"torch",
"einops",
],
setup_requires=[
"packaging",
"psutil",
"ninja",
],
) |