File size: 7,211 Bytes
b9dbb7e
 
 
 
 
 
 
 
 
 
 
 
 
b5b4fac
 
 
 
 
 
 
b9dbb7e
 
 
 
 
 
 
2c71472
d41bf9b
 
 
3b55b31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d41bf9b
 
 
 
 
3b55b31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d41bf9b
b9dbb7e
 
2c71472
b9dbb7e
 
 
 
 
 
 
 
 
 
2c71472
 
 
 
 
 
 
 
 
 
 
 
b9dbb7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
---
license: other
license_name: deepseek
license_link: LICENSE
tags:
- TensorBlock
- GGUF
base_model: deepseek-ai/deepseek-coder-7b-instruct-v1.5
---

<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>

[![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co)
[![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi)
[![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2)
[![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock)
[![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock)


## deepseek-ai/deepseek-coder-7b-instruct-v1.5 - GGUF

This repo contains GGUF format model files for [deepseek-ai/deepseek-coder-7b-instruct-v1.5](https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5).

The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).


## Our projects
<table border="1" cellspacing="0" cellpadding="10">
  <tr>
    <th colspan="2" style="font-size: 25px;">Forge</th>
  </tr>
  <tr>
    <th colspan="2">
      <img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/>
    </th>
  </tr>
  <tr>
    <th colspan="2">An OpenAI-compatible multi-provider routing layer.</th>
  </tr>
  <tr>
    <th colspan="2">
      <a href="https://github.com/TensorBlock/forge" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">🚀 Try it now! 🚀</a>
    </th>
  </tr>

  <tr>
    <th style="font-size: 25px;">Awesome MCP Servers</th>
    <th style="font-size: 25px;">TensorBlock Studio</th>
  </tr>
  <tr>
    <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th>
    <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th>
  </tr>
  <tr>
    <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
    <th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
  </tr>
  <tr>
    <th>
      <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">👀 See what we built 👀</a>
    </th>
    <th>
      <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">👀 See what we built 👀</a>
    </th>
  </tr>
</table>
## Prompt template


```
<|begin▁of▁sentence|>{system_prompt}### Instruction:
{prompt}
### Response:
```

## Model file specification

| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [deepseek-coder-7b-instruct-v1.5-Q2_K.gguf](https://huggingface.co/tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF/blob/main/deepseek-coder-7b-instruct-v1.5-Q2_K.gguf) | Q2_K | 2.532 GB | smallest, significant quality loss - not recommended for most purposes |
| [deepseek-coder-7b-instruct-v1.5-Q3_K_S.gguf](https://huggingface.co/tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF/blob/main/deepseek-coder-7b-instruct-v1.5-Q3_K_S.gguf) | Q3_K_S | 2.923 GB | very small, high quality loss |
| [deepseek-coder-7b-instruct-v1.5-Q3_K_M.gguf](https://huggingface.co/tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF/blob/main/deepseek-coder-7b-instruct-v1.5-Q3_K_M.gguf) | Q3_K_M | 3.223 GB | very small, high quality loss |
| [deepseek-coder-7b-instruct-v1.5-Q3_K_L.gguf](https://huggingface.co/tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF/blob/main/deepseek-coder-7b-instruct-v1.5-Q3_K_L.gguf) | Q3_K_L | 3.489 GB | small, substantial quality loss |
| [deepseek-coder-7b-instruct-v1.5-Q4_0.gguf](https://huggingface.co/tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF/blob/main/deepseek-coder-7b-instruct-v1.5-Q4_0.gguf) | Q4_0 | 3.725 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [deepseek-coder-7b-instruct-v1.5-Q4_K_S.gguf](https://huggingface.co/tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF/blob/main/deepseek-coder-7b-instruct-v1.5-Q4_K_S.gguf) | Q4_K_S | 3.749 GB | small, greater quality loss |
| [deepseek-coder-7b-instruct-v1.5-Q4_K_M.gguf](https://huggingface.co/tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF/blob/main/deepseek-coder-7b-instruct-v1.5-Q4_K_M.gguf) | Q4_K_M | 3.933 GB | medium, balanced quality - recommended |
| [deepseek-coder-7b-instruct-v1.5-Q5_0.gguf](https://huggingface.co/tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF/blob/main/deepseek-coder-7b-instruct-v1.5-Q5_0.gguf) | Q5_0 | 4.481 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [deepseek-coder-7b-instruct-v1.5-Q5_K_S.gguf](https://huggingface.co/tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF/blob/main/deepseek-coder-7b-instruct-v1.5-Q5_K_S.gguf) | Q5_K_S | 4.481 GB | large, low quality loss - recommended |
| [deepseek-coder-7b-instruct-v1.5-Q5_K_M.gguf](https://huggingface.co/tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF/blob/main/deepseek-coder-7b-instruct-v1.5-Q5_K_M.gguf) | Q5_K_M | 4.588 GB | large, very low quality loss - recommended |
| [deepseek-coder-7b-instruct-v1.5-Q6_K.gguf](https://huggingface.co/tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF/blob/main/deepseek-coder-7b-instruct-v1.5-Q6_K.gguf) | Q6_K | 5.284 GB | very large, extremely low quality loss |
| [deepseek-coder-7b-instruct-v1.5-Q8_0.gguf](https://huggingface.co/tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF/blob/main/deepseek-coder-7b-instruct-v1.5-Q8_0.gguf) | Q8_0 | 6.842 GB | very large, extremely low quality loss - not recommended |


## Downloading instruction

### Command line

Firstly, install Huggingface Client

```shell
pip install -U "huggingface_hub[cli]"
```

Then, downoad the individual model file the a local directory

```shell
huggingface-cli download tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF --include "deepseek-coder-7b-instruct-v1.5-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```

If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:

```shell
huggingface-cli download tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```