File size: 7,211 Bytes
b9dbb7e b5b4fac b9dbb7e 2c71472 d41bf9b 3b55b31 d41bf9b 3b55b31 d41bf9b b9dbb7e 2c71472 b9dbb7e 2c71472 b9dbb7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
---
license: other
license_name: deepseek
license_link: LICENSE
tags:
- TensorBlock
- GGUF
base_model: deepseek-ai/deepseek-coder-7b-instruct-v1.5
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
[](https://tensorblock.co)
[](https://twitter.com/tensorblock_aoi)
[](https://discord.gg/Ej5NmeHFf2)
[](https://github.com/TensorBlock)
[](https://t.me/TensorBlock)
## deepseek-ai/deepseek-coder-7b-instruct-v1.5 - GGUF
This repo contains GGUF format model files for [deepseek-ai/deepseek-coder-7b-instruct-v1.5](https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Our projects
<table border="1" cellspacing="0" cellpadding="10">
<tr>
<th colspan="2" style="font-size: 25px;">Forge</th>
</tr>
<tr>
<th colspan="2">
<img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/>
</th>
</tr>
<tr>
<th colspan="2">An OpenAI-compatible multi-provider routing layer.</th>
</tr>
<tr>
<th colspan="2">
<a href="https://github.com/TensorBlock/forge" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">🚀 Try it now! 🚀</a>
</th>
</tr>
<tr>
<th style="font-size: 25px;">Awesome MCP Servers</th>
<th style="font-size: 25px;">TensorBlock Studio</th>
</tr>
<tr>
<th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th>
<th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th>
</tr>
<tr>
<th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
<th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
</tr>
<tr>
<th>
<a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">👀 See what we built 👀</a>
</th>
<th>
<a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">👀 See what we built 👀</a>
</th>
</tr>
</table>
## Prompt template
```
<|begin▁of▁sentence|>{system_prompt}### Instruction:
{prompt}
### Response:
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [deepseek-coder-7b-instruct-v1.5-Q2_K.gguf](https://huggingface.co/tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF/blob/main/deepseek-coder-7b-instruct-v1.5-Q2_K.gguf) | Q2_K | 2.532 GB | smallest, significant quality loss - not recommended for most purposes |
| [deepseek-coder-7b-instruct-v1.5-Q3_K_S.gguf](https://huggingface.co/tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF/blob/main/deepseek-coder-7b-instruct-v1.5-Q3_K_S.gguf) | Q3_K_S | 2.923 GB | very small, high quality loss |
| [deepseek-coder-7b-instruct-v1.5-Q3_K_M.gguf](https://huggingface.co/tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF/blob/main/deepseek-coder-7b-instruct-v1.5-Q3_K_M.gguf) | Q3_K_M | 3.223 GB | very small, high quality loss |
| [deepseek-coder-7b-instruct-v1.5-Q3_K_L.gguf](https://huggingface.co/tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF/blob/main/deepseek-coder-7b-instruct-v1.5-Q3_K_L.gguf) | Q3_K_L | 3.489 GB | small, substantial quality loss |
| [deepseek-coder-7b-instruct-v1.5-Q4_0.gguf](https://huggingface.co/tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF/blob/main/deepseek-coder-7b-instruct-v1.5-Q4_0.gguf) | Q4_0 | 3.725 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [deepseek-coder-7b-instruct-v1.5-Q4_K_S.gguf](https://huggingface.co/tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF/blob/main/deepseek-coder-7b-instruct-v1.5-Q4_K_S.gguf) | Q4_K_S | 3.749 GB | small, greater quality loss |
| [deepseek-coder-7b-instruct-v1.5-Q4_K_M.gguf](https://huggingface.co/tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF/blob/main/deepseek-coder-7b-instruct-v1.5-Q4_K_M.gguf) | Q4_K_M | 3.933 GB | medium, balanced quality - recommended |
| [deepseek-coder-7b-instruct-v1.5-Q5_0.gguf](https://huggingface.co/tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF/blob/main/deepseek-coder-7b-instruct-v1.5-Q5_0.gguf) | Q5_0 | 4.481 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [deepseek-coder-7b-instruct-v1.5-Q5_K_S.gguf](https://huggingface.co/tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF/blob/main/deepseek-coder-7b-instruct-v1.5-Q5_K_S.gguf) | Q5_K_S | 4.481 GB | large, low quality loss - recommended |
| [deepseek-coder-7b-instruct-v1.5-Q5_K_M.gguf](https://huggingface.co/tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF/blob/main/deepseek-coder-7b-instruct-v1.5-Q5_K_M.gguf) | Q5_K_M | 4.588 GB | large, very low quality loss - recommended |
| [deepseek-coder-7b-instruct-v1.5-Q6_K.gguf](https://huggingface.co/tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF/blob/main/deepseek-coder-7b-instruct-v1.5-Q6_K.gguf) | Q6_K | 5.284 GB | very large, extremely low quality loss |
| [deepseek-coder-7b-instruct-v1.5-Q8_0.gguf](https://huggingface.co/tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF/blob/main/deepseek-coder-7b-instruct-v1.5-Q8_0.gguf) | Q8_0 | 6.842 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF --include "deepseek-coder-7b-instruct-v1.5-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/deepseek-coder-7b-instruct-v1.5-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|