---
license: cc-by-nc-sa-4.0
---
# ColorizeDiffusion: Adjustable Sketch Colorization with Reference Image and Text
[-B31B1B?style=flat&logo=arXiv)](https://arxiv.org/abs/2401.01456)
[](https://openaccess.thecvf.com/content/WACV2025/html/Yan_ColorizeDiffusion_Improving_Reference-Based_Sketch_Colorization_with_Latent_Diffusion_Model_WACV_2025_paper.html)
[-B31B1B?style=flat&logo=arXiv)](https://arxiv.org/abs/2502.19937)
[-B31B1B?style=flat&logo=arXiv)](https://arxiv.org/abs/2504.06895)
[](https://huggingface.co/tellurion/ColorizeDiffusion/tree/main)
[](https://github.com/tellurion-kanata/colorizeDiffusion/blob/master/LICENSE)

(April. 2025)
Official implementation of Colorize Diffusion.
Colorize Diffusion is a SD-based colorization framework that can achieve high-quality colorization results with arbitrary input pairs.
Fundamental issue for this repository: [ColorizeDiffusion (e-print)](https://arxiv.org/abs/2401.01456).
***Version 1*** - Base training, 512px. Released, ckpt starts with **mult**.
***Version 1.5*** - Solving spatial entanglement, 512px. Released, ckpt starts with **switch**.
***Version 2*** - Enhancing background and style transfer, 768px. Released, ckpt starts with **v2**.
***Version XL*** - Enhancing embedding guidance for character colorization, geometry disentanglement, 1024px. Available soon.
## Getting Start
-------------------------------------------------------------------------------------------
```shell
conda env create -f environment.yaml
conda activate hf
```
## User Interface
-------------------------------------------------------------------------------------------
We implement a fully-featured UI. To run it, just:
```shell
python -u app.py
```
The default server address is http://localhost:7860.
#### Important inference options
| Options | Description |
|:----------------------|:--------------------------------------------------------------------------------------------------|
| BG enhance | Low-level feature injection for v2 models. |
| FG enhance | Useless for currently open-sourced models. |
| Reference strength | Decreasing it to increase semantic fidelity to sketch inputs. |
| Foreground strength | Similar to reference strength but only for foreground region. Need to activate FG or BG enhance. |
| Preprocessor | Sketch preprocessing. **Extract** is suggested if the sketch input is complicated pencil drawing. |
| Line extractor | Line extractors used when preprocessor is **Extract**. |
| Sketch guidance scale | Classifier-free guidance scale of the sketch image, suggested 1. |
| Attention injection | Noised low-level feature injection, 2x inference time. |
### 768-level Cross-content colorization results (from v2)


### 1536-level Character colorization results (from XL)


## Manipulation
-------------------------------------------------------------------------------------------
The colorization results can be manipulated using text prompts, see [ColorizeDiffusion (e-print)](https://arxiv.org/abs/2401.01456).
It is now deactivated by default. To activate it, use
```shell
python -u app.py -manipulate
```
For local manipulations, a visualization is provided to show the correlation between each prompt and tokens in the reference image.
The manipulation result and correlation visualization of the settings:
Target prompt: the girl's blonde hair
Anchor prompt the girl's brown hair
Control prompt the girl's brown hair,
Target scale: 8
Enhanced: false
Thresholds: 0.5、0.55、0.65、0.95


As you can see, the manipluation unavoidably changed some unrelated regions as it is taken on the reference embeddings.
#### Manipulation options
| Options | Description |
| :----- |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Group index | The index of selected manipulation sequences's parameter group. |
| Target prompt | The prompt used to specify the desired visual attribute for the image after manipulation. |
| Anchor prompt | The prompt to specify the anchored visaul attribute for the image before manipulation. |
| Control prompt | Used for local manipulation (crossattn-based models). The prompt to specify the target regions. |
| Enhance | Specify whether this manipulation should be enhanced or not. (More likely to influence unrelated attribute). |
| Target scale | The scale used to progressively control the manipulation. |
| Thresholds | Used for local manipulation (crossattn-based models). Four hyperparameters used to reduce the influnece on irrelevant visual attributes, where 0.0 < threshold 0 < threshold 1 < threshold 2 < threshold 3 < 1.0. |
| \Threshold3 | Select most unrelated regions. Indicated by brown. |
|Add| Click add to save current manipulation in the sequence. |
## Training
Our implementation is based on Accelerate and Deepspeed.
Before starting a training, first collect data and organize your training dataset as follows:
```
[dataset_path]
├── image_list.json # Optionally for image indexing
├── color/ # Color images
│ ├── 0001.zip
| | ├── 10001.png
| | ├── 100001.jpg
│ | └── ...
│ ├── 0002.zip
│ └── ...
├── sketch # Sketch images
│ ├── 0001.zip
| | ├── 10001.png
| | ├── 100001.jpg
│ | └── ...
│ ├── 0002.zip
│ └── ...
└── mask # Mask images (required for fg-bg training)
├── 0001.zip
| ├── 10001.png
| ├── 100001.jpg
| └── ...
├── 0002.zip
└── ...
```
For details of dataset organization, check `data/dataloader.py`.
Training command example:
```
accelerate launch --config_file [accelerate_config_file] \
train.py \
--name base \
--dataroot [dataset_path] \
--batch_size 64 \
--num_threads 8 \
-cfg configs/train/sd2.1/mult.yaml \
-pt [pretrained_model_path]
```
Refer to `options.py` for training/inference/validation arguments.
Note that the `batch size` here is micro batch size per gpu. If you run the command on 8 gpus, the total batch size is 512.
## Code reference
1. [Stable Diffusion v2](https://github.com/Stability-AI/stablediffusion)
2. [Stable Diffusion XL](https://github.com/Stability-AI/generative-models)
3. [SD-webui-ControlNet](https://github.com/Mikubill/sd-webui-controlnet)
4. [Stable-Diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui)
5. [K-diffusion](https://github.com/crowsonkb/k-diffusion)
6. [Deepspeed](https://github.com/microsoft/DeepSpeed)
7. [sketchKeras-PyTorch](https://github.com/higumax/sketchKeras-pytorch)
## Citation
```
@article{2024arXiv240101456Y,
author = {{Yan}, Dingkun and {Yuan}, Liang and {Wu}, Erwin and {Nishioka}, Yuma and {Fujishiro}, Issei and {Saito}, Suguru},
title = "{ColorizeDiffusion: Adjustable Sketch Colorization with Reference Image and Text}",
journal = {arXiv e-prints},
year = {2024},
doi = {10.48550/arXiv.2401.01456},
}
@InProceedings{Yan_2025_WACV,
author = {Yan, Dingkun and Yuan, Liang and Wu, Erwin and Nishioka, Yuma and Fujishiro, Issei and Saito, Suguru},
title = {ColorizeDiffusion: Improving Reference-Based Sketch Colorization with Latent Diffusion Model},
booktitle = {Proceedings of the Winter Conference on Applications of Computer Vision (WACV)},
year = {2025},
pages = {5092-5102}
}
@article{2025arXiv250219937Y,
author = {{Yan}, Dingkun and {Wang}, Xinrui and {Li}, Zhuoru and {Saito}, Suguru and {Iwasawa}, Yusuke and {Matsuo}, Yutaka and {Guo}, Jiaxian},
title = "{Image Referenced Sketch Colorization Based on Animation Creation Workflow}",
journal = {arXiv e-prints},
year = {2025},
doi = {10.48550/arXiv.2502.19937},
}
@article{yan2025colorizediffusionv2enhancingreferencebased,
title={ColorizeDiffusion v2: Enhancing Reference-based Sketch Colorization Through Separating Utilities},
author={Dingkun Yan and Xinrui Wang and Yusuke Iwasawa and Yutaka Matsuo and Suguru Saito and Jiaxian Guo},
year={2025},
journal = {arXiv e-prints},
doi = {10.48550/arXiv.2504.06895},
}