BoundaryDiffusion / boundarydiffusion.py
szyezhu's picture
Upload 46 files
019d164
import time
from glob import glob
from tqdm import tqdm
import os
import numpy as np
import cv2
from PIL import Image
import torch
from torch import nn
import torchvision.utils as tvu
from sklearn import svm
import pickle
import torch.optim as optim
from models.ddpm.diffusion import DDPM
from models.improved_ddpm.script_util import i_DDPM
from utils.text_dic import SRC_TRG_TXT_DIC
from utils.diffusion_utils import get_beta_schedule, denoising_step
from datasets.data_utils import get_dataset, get_dataloader
from configs.paths_config import DATASET_PATHS, MODEL_PATHS, HYBRID_MODEL_PATHS, HYBRID_CONFIG
from datasets.imagenet_dic import IMAGENET_DIC
from utils.align_utils import run_alignment
from utils.distance_utils import euclidean_distance, cosine_similarity
def compute_radius(x):
x = torch.pow(x, 2)
r = torch.sum(x)
r = torch.sqrt(r)
return r
class BoundaryDiffusion(object):
def __init__(self, args, config, device=None):
self.args = args
self.config = config
if device is None:
device = torch.device(
"cuda") if torch.cuda.is_available() else torch.device("cpu")
self.device = device
self.model_var_type = config.model.var_type
betas = get_beta_schedule(
beta_start=config.diffusion.beta_start,
beta_end=config.diffusion.beta_end,
num_diffusion_timesteps=config.diffusion.num_diffusion_timesteps
)
self.betas = torch.from_numpy(betas).float().to(self.device)
self.num_timesteps = betas.shape[0]
alphas = 1.0 - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
posterior_variance = betas * \
(1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)
if self.model_var_type == "fixedlarge":
self.logvar = np.log(np.append(posterior_variance[1], betas[1:]))
elif self.model_var_type == 'fixedsmall':
self.logvar = np.log(np.maximum(posterior_variance, 1e-20))
if self.args.edit_attr is None:
self.src_txts = self.args.src_txts
self.trg_txts = self.args.trg_txts
else:
self.src_txts = SRC_TRG_TXT_DIC[self.args.edit_attr][0]
self.trg_txts = SRC_TRG_TXT_DIC[self.args.edit_attr][1]
def unconditional(self):
print(self.args.exp)
# ----------- Model -----------#
if self.config.data.dataset == "LSUN":
if self.config.data.category == "bedroom":
url = "https://image-editing-test-12345.s3-us-west-2.amazonaws.com/checkpoints/bedroom.ckpt"
elif self.config.data.category == "church_outdoor":
url = "https://image-editing-test-12345.s3-us-west-2.amazonaws.com/checkpoints/church_outdoor.ckpt"
elif self.config.data.dataset == "CelebA_HQ":
url = "https://image-editing-test-12345.s3-us-west-2.amazonaws.com/checkpoints/celeba_hq.ckpt"
elif self.config.data.dataset == "AFHQ":
pass
else:
raise ValueError
if self.config.data.dataset in ["CelebA_HQ", "LSUN"]:
model = DDPM(self.config)
if self.args.model_path:
init_ckpt = torch.load(self.args.model_path)
else:
init_ckpt = torch.hub.load_state_dict_from_url(url, map_location=self.device)
learn_sigma = False
print("Original diffusion Model loaded.")
elif self.config.data.dataset in ["FFHQ", "AFHQ"]:
model = i_DDPM(self.config.data.dataset)
if self.args.model_path:
init_ckpt = torch.load(self.args.model_path)
else:
init_ckpt = torch.load(MODEL_PATHS[self.config.data.dataset])
learn_sigma = True
print("Improved diffusion Model loaded.")
else:
print('Not implemented dataset')
raise ValueError
model.load_state_dict(init_ckpt)
model.to(self.device)
model = torch.nn.DataParallel(model)
model.eval()
# ----------- Precompute Latents -----------#
seq_inv = np.linspace(0, 1, 999) * 999
seq_inv = [int(s) for s in list(seq_inv)]
seq_inv_next = [-1] + list(seq_inv[:-1])
###---- boundaries---####
# ---------- Load boundary ----------#
classifier = pickle.load(open('./boundary/smile_boundary_h.sav', 'rb'))
a = classifier.coef_.reshape(1, 512*8*8).astype(np.float32)
# a = a / np.linalg.norm(a)
z_classifier = pickle.load(open('./boundary/smile_boundary_z.sav', 'rb'))
z_a = z_classifier.coef_.reshape(1, 3*256*256).astype(np.float32)
z_a = z_a / np.linalg.norm(z_a) # normalized boundary
x_lat = torch.randn(1, 3, 256, 256, device=self.device)
n = 1
print("get the sampled latent encodings x_T!")
with torch.no_grad():
with tqdm(total=len(seq_inv), desc=f"Generative process") as progress_bar:
for it, (i, j) in enumerate(zip(reversed((seq_inv)), reversed((seq_inv_next)))):
t = (torch.ones(n) * i).to(self.device)
t_next = (torch.ones(n) * j).to(self.device)
# print("check t and t_next:", t, t_next)
if t == self.args.t_0:
break
x_lat, h_lat = denoising_step(x_lat, t=t, t_next=t_next, models=model,
logvars=self.logvar,
# sampling_type=self.args.sample_type,
sampling_type='ddim',
b=self.betas,
eta=0.0,
learn_sigma=learn_sigma,
)
progress_bar.update(1)
# ----- Editing space ------ #
start_distance = self.args.start_distance
end_distance = self.args.end_distance
edit_img_number = self.args.edit_img_number
linspace = np.linspace(start_distance, end_distance, edit_img_number)
latent_code = h_lat.cpu().view(1,-1).numpy()
linspace = linspace - latent_code.dot(a.T)
linspace = linspace.reshape(-1, 1).astype(np.float32)
edit_h_seq = latent_code + linspace * a
z_linspace = np.linspace(start_distance, end_distance, edit_img_number)
z_latent_code = x_lat.cpu().view(1,-1).numpy()
z_linspace = z_linspace - z_latent_code.dot(z_a.T)
z_linspace = z_linspace.reshape(-1, 1).astype(np.float32)
edit_z_seq = z_latent_code + z_linspace * z_a
for k in range(edit_img_number):
time_in_start = time.time()
seq_inv = np.linspace(0, 1, self.args.n_inv_step) * self.args.t_0
seq_inv = [int(s) for s in list(seq_inv)]
seq_inv_next = [-1] + list(seq_inv[:-1])
with tqdm(total=len(seq_inv), desc="Generative process {}".format(it)) as progress_bar:
edit_h = torch.from_numpy(edit_h_seq[k]).to(self.device).view(-1, 512, 8, 8)
edit_z = torch.from_numpy(edit_z_seq[k]).to(self.device).view(-1, 3, 256, 256)
for i, j in zip(reversed(seq_inv), reversed(seq_inv_next)):
t = (torch.ones(n) * i).to(self.device)
t_next = (torch.ones(n) * j).to(self.device)
edit_z, edit_h = denoising_step(edit_z, t=t, t_next=t_next, models=model,
logvars=self.logvar,
sampling_type=self.args.sample_type,
b=self.betas,
eta = 1.0,
learn_sigma=learn_sigma,
ratio=self.args.model_ratio,
hybrid=self.args.hybrid_noise,
hybrid_config=HYBRID_CONFIG,
edit_h=edit_h,
)
save_edit = "unconditioned_smile_"+str(k)+".png"
tvu.save_image((edit_z + 1) * 0.5, os.path.join("edit_output",save_edit))
time_in_end = time.time()
print(f"Editing for 1 image takes {time_in_end - time_in_start:.4f}s")
return
def radius(self):
print(self.args.exp)
# ----------- Model -----------#
if self.config.data.dataset == "LSUN":
if self.config.data.category == "bedroom":
url = "https://image-editing-test-12345.s3-us-west-2.amazonaws.com/checkpoints/bedroom.ckpt"
elif self.config.data.category == "church_outdoor":
url = "https://image-editing-test-12345.s3-us-west-2.amazonaws.com/checkpoints/church_outdoor.ckpt"
elif self.config.data.dataset == "CelebA_HQ":
url = "https://image-editing-test-12345.s3-us-west-2.amazonaws.com/checkpoints/celeba_hq.ckpt"
elif self.config.data.dataset == "AFHQ":
pass
else:
raise ValueError
if self.config.data.dataset in ["CelebA_HQ", "LSUN"]:
model = DDPM(self.config)
if self.args.model_path:
init_ckpt = torch.load(self.args.model_path)
else:
init_ckpt = torch.hub.load_state_dict_from_url(url, map_location=self.device)
learn_sigma = False
print("Original diffusion Model loaded.")
elif self.config.data.dataset in ["FFHQ", "AFHQ"]:
model = i_DDPM(self.config.data.dataset)
if self.args.model_path:
init_ckpt = torch.load(self.args.model_path)
else:
init_ckpt = torch.load(MODEL_PATHS[self.config.data.dataset])
learn_sigma = True
print("Improved diffusion Model loaded.")
else:
print('Not implemented dataset')
raise ValueError
model.load_state_dict(init_ckpt)
model.to(self.device)
model = torch.nn.DataParallel(model)
model.eval()
# ---------- Prepare the seq --------- #
# seq_inv = np.linspace(0, 1, self.args.n_inv_step) * self.args.t_0
seq_inv = np.linspace(0, 1, 999) * 999
seq_inv = [int(s) for s in list(seq_inv)]
seq_inv_next = [-1] + list(seq_inv[:-1])
n = 1
with torch.no_grad():
er = 0
x_rand = torch.randn(100, 3, 256, 256, device=self.device)
for idx in range(100):
x = x_rand[idx, :, :, :].unsqueeze(0)
with tqdm(total=len(seq_inv), desc=f"Generative process") as progress_bar:
for it, (i, j) in enumerate(zip(reversed((seq_inv)), reversed((seq_inv_next)))):
t = (torch.ones(n) * i).to(self.device)
t_next = (torch.ones(n) * j).to(self.device)
if t == 500:
break
x, _ = denoising_step(x, t=t, t_next=t_next, models=model,
logvars=self.logvar,
# sampling_type=self.args.sample_type,
sampling_type='ddim',
b=self.betas,
eta=0.0,
learn_sigma=learn_sigma,
)
progress_bar.update(1)
r_x = compute_radius(x)
er += r_x
print("Check radius at step :", er/100)
return
def boundary_search(self):
print(self.args.exp)
# ----------- Model -----------#
if self.config.data.dataset == "LSUN":
if self.config.data.category == "bedroom":
url = "https://image-editing-test-12345.s3-us-west-2.amazonaws.com/checkpoints/bedroom.ckpt"
elif self.config.data.category == "church_outdoor":
url = "https://image-editing-test-12345.s3-us-west-2.amazonaws.com/checkpoints/church_outdoor.ckpt"
elif self.config.data.dataset == "CelebA_HQ":
url = "https://image-editing-test-12345.s3-us-west-2.amazonaws.com/checkpoints/celeba_hq.ckpt"
elif self.config.data.dataset == "AFHQ":
pass
else:
raise ValueError
if self.config.data.dataset in ["CelebA_HQ", "LSUN"]:
model = DDPM(self.config)
if self.args.model_path:
init_ckpt = torch.load(self.args.model_path)
else:
init_ckpt = torch.hub.load_state_dict_from_url(url, map_location=self.device)
learn_sigma = False
print("Original diffusion Model loaded.")
elif self.config.data.dataset in ["FFHQ", "AFHQ"]:
model = i_DDPM(self.config.data.dataset)
if self.args.model_path:
init_ckpt = torch.load(self.args.model_path)
else:
init_ckpt = torch.load(MODEL_PATHS[self.config.data.dataset])
learn_sigma = True
print("Improved diffusion Model loaded.")
else:
print('Not implemented dataset')
raise ValueError
model.load_state_dict(init_ckpt)
model.to(self.device)
model = torch.nn.DataParallel(model)
model.eval()
# ----------- Precompute Latents -----------#
print("Prepare identity latent")
seq_inv = np.linspace(0, 1, self.args.n_inv_step) * self.args.t_0
seq_inv = [int(s) for s in list(seq_inv)]
seq_inv_next = [-1] + list(seq_inv[:-1])
n = self.args.bs_train
img_lat_pairs_dic = {}
for mode in ['train', 'test']:
img_lat_pairs = []
pairs_path = os.path.join('precomputed/',
f'{self.config.data.category}_{mode}_t{self.args.t_0}_nim{self.args.n_precomp_img}_ninv{self.args.n_inv_step}_pairs.pth')
print(pairs_path)
if os.path.exists(pairs_path):
print(f'{mode} pairs exists')
img_lat_pairs_dic[mode] = torch.load(pairs_path)
for step, (x0, x_id, x_lat, mid_h, label) in enumerate(img_lat_pairs_dic[mode]):
tvu.save_image((x0 + 1) * 0.5, os.path.join(self.args.image_folder, f'{mode}_{step}_0_orig.png'))
tvu.save_image((x_id + 1) * 0.5, os.path.join(self.args.image_folder,
f'{mode}_{step}_1_rec_ninv{self.args.n_inv_step}.png'))
if step == self.args.n_precomp_img - 1:
break
continue
else:
train_dataset, test_dataset = get_dataset(self.config.data.dataset, DATASET_PATHS, self.config)
loader_dic = get_dataloader(train_dataset, test_dataset, bs_train=self.args.bs_train,
num_workers=self.config.data.num_workers)
loader = loader_dic[mode]
for step, (img, label) in enumerate(loader):
# for step, img in enumerate(loader):
x0 = img.to(self.config.device)
tvu.save_image((x0 + 1) * 0.5, os.path.join(self.args.image_folder, f'{mode}_{step}_0_orig.png'))
x = x0.clone()
model.eval()
label = label.to(self.config.device)
# print("check x and label:", x.size(), label)
with torch.no_grad():
with tqdm(total=len(seq_inv), desc=f"Inversion process {mode} {step}") as progress_bar:
for it, (i, j) in enumerate(zip((seq_inv_next[1:]), (seq_inv[1:]))):
t = (torch.ones(n) * i).to(self.device)
t_prev = (torch.ones(n) * j).to(self.device)
x, mid_h_g = denoising_step(x, t=t, t_next=t_prev, models=model,
logvars=self.logvar,
sampling_type='ddim',
b=self.betas,
eta=0,
learn_sigma=learn_sigma)
progress_bar.update(1)
x_lat = x.clone()
tvu.save_image((x_lat + 1) * 0.5, os.path.join(self.args.image_folder,
f'{mode}_{step}_1_lat_ninv{self.args.n_inv_step}.png'))
with tqdm(total=len(seq_inv), desc=f"Generative process {mode} {step}") as progress_bar:
for it, (i, j) in enumerate(zip(reversed((seq_inv)), reversed((seq_inv_next)))):
t = (torch.ones(n) * i).to(self.device)
t_next = (torch.ones(n) * j).to(self.device)
x, _ = denoising_step(x, t=t, t_next=t_next, models=model,
logvars=self.logvar,
sampling_type=self.args.sample_type,
b=self.betas,
learn_sigma=learn_sigma,
# edit_h = mid_h,
)
progress_bar.update(1)
img_lat_pairs.append([x0, x.detach().clone(), x_lat.detach().clone(), mid_h_g.detach().clone(), label])
# img_lat_pairs.append([x0, x.detach().clone(), x_lat.detach().clone(), mid_h_g.detach().clone()])
tvu.save_image((x + 1) * 0.5, os.path.join(self.args.image_folder,
f'{mode}_{step}_1_rec_ninv{self.args.n_inv_step}.png'))
if step == self.args.n_precomp_img - 1:
break
img_lat_pairs_dic[mode] = img_lat_pairs
pairs_path = os.path.join('precomputed/',
f'{self.config.data.category}_{mode}_t{self.args.t_0}_nim{self.args.n_precomp_img}_ninv{self.args.n_inv_step}_pairs.pth')
torch.save(img_lat_pairs, pairs_path)
# ----------- Training boundaries -----------#
print("Start boundary search")
print(f"Sampling type: {self.args.sample_type.upper()} with eta {self.args.eta}")
if self.args.n_train_step != 0:
seq_train = np.linspace(0, 1, self.args.n_train_step) * self.args.t_0
seq_train = [int(s) for s in list(seq_train)]
print('Uniform skip type')
else:
seq_train = list(range(self.args.t_0))
print('No skip')
seq_train_next = [-1] + list(seq_train[:-1])
seq_test = np.linspace(0, 1, self.args.n_test_step) * self.args.t_0
seq_test = [int(s) for s in list(seq_test)]
seq_test_next = [-1] + list(seq_test[:-1])
for src_txt, trg_txt in zip(self.src_txts, self.trg_txts):
print(f"CHANGE {src_txt} TO {trg_txt}")
time_in_start = time.time()
clf_h = svm.SVC(kernel='linear')
clf_z = svm.SVC(kernel='linear')
# print("clf model:",clf)
exp_id = os.path.split(self.args.exp)[-1]
save_name_h = f'boundary/{exp_id}_{trg_txt.replace(" ", "_")}_h.sav'
save_name_z = f'boundary/{exp_id}_{trg_txt.replace(" ", "_")}_z.sav'
n_train = len(img_lat_pairs_dic['train'])
train_data_z = np.empty([n_train, 3*256*256])
train_data_h = np.empty([n_train, 512*8*8])
train_label = np.empty([n_train,], dtype=int)
for step, (x0, x_id, x_lat, mid_h, label) in enumerate(img_lat_pairs_dic['train']):
train_data_h[step, :] = mid_h.view(1,-1).cpu().numpy()
train_data_z[step, :] = x_lat.view(1,-1).cpu().numpy()
train_label[step] = label.cpu().numpy()
classifier_h = clf_h.fit(train_data_h, train_label)
classifier_z = clf_z.fit(train_data_z, train_label)
print(np.shape(train_data_h), np.shape(train_data_z), np.shape(train_label))
# a = classifier.coef_.reshape(1, 512*8*8).astype(np.float32)
# a = classifier.coef_.reshape(1, 3*256*256).astype(np.float32)
# a = a / np.linalg.norm(a)
time_in_end = time.time()
print(f"Finding boundary takes {time_in_end - time_in_start:.4f}s")
print("Finishing boudary seperation!")
# boudary_save_h = 'smiling_boundary_h.sav'
# boudary_save_z = 'smiling_boundary_z.sav'
pickle.dump(classifier_h, open(save_name_h, 'wb'))
pickle.dump(classifier_z, open(save_name_z, 'wb'))
# test the accuracy ##
n_test = len(img_lat_pairs_dic['test'])
test_data_h = np.empty([n_test, 512*8*8])
test_data_z = np.empty([n_test, 3*256*256])
test_lable = np.empty([n_test,], dtype=int)
for step, (x0, x_id, x_lat, mid_h, label) in enumerate(img_lat_pairs_dic['test']):
test_data_h[step, :] = mid_h.view(1,-1).cpu().numpy()
test_data_z[step, :] = x_lat.view(1,-1).cpu().numpy()
test_lable[step] = label.cpu().numpy()
classifier_h = pickle.load(open(save_name_h, 'rb'))
classifier_z = pickle.load(open(save_name_z, 'rb'))
print("Boundary loaded!")
val_prediction_h = classifier_h.predict(test_data_h)
val_prediction_z = classifier_z.predict(test_data_z)
correct_num_h = np.sum(test_lable == val_prediction_h)
correct_num_z = np.sum(test_lable == val_prediction_z)
# print(val_prediction_h, test_lable)
print("Validation accuracy on h and z spaces:", correct_num_h/n_test, correct_num_z/n_test)
print("total training and testing", n_train, n_test)
return None
def edit_image_boundary(self):
# ----------- Data -----------#
n = self.args.bs_test
if self.args.align_face and self.config.data.dataset in ["FFHQ", "CelebA_HQ"]:
try:
img = run_alignment(self.args.img_path, output_size=self.config.data.image_size)
except:
img = Image.open(self.args.img_path).convert("RGB")
else:
img = Image.open(self.args.img_path).convert("RGB")
img = img.resize((self.config.data.image_size, self.config.data.image_size), Image.ANTIALIAS)
img = np.array(img)/255
img = torch.from_numpy(img).type(torch.FloatTensor).permute(2, 0, 1).unsqueeze(dim=0).repeat(n, 1, 1, 1)
img = img.to(self.config.device)
tvu.save_image(img, os.path.join(self.args.image_folder, f'0_orig.png'))
x0 = (img - 0.5) * 2.
# ----------- Models -----------#
if self.config.data.dataset == "LSUN":
if self.config.data.category == "bedroom":
url = "https://image-editing-test-12345.s3-us-west-2.amazonaws.com/checkpoints/bedroom.ckpt"
elif self.config.data.category == "church_outdoor":
url = "https://image-editing-test-12345.s3-us-west-2.amazonaws.com/checkpoints/church_outdoor.ckpt"
elif self.config.data.dataset == "CelebA_HQ":
url = "https://image-editing-test-12345.s3-us-west-2.amazonaws.com/checkpoints/celeba_hq.ckpt"
elif self.config.data.dataset in ["FFHQ", "AFHQ", "IMAGENET"]:
pass
else:
raise ValueError
if self.config.data.dataset in ["CelebA_HQ", "LSUN"]:
model = DDPM(self.config)
if self.args.model_path:
init_ckpt = torch.load(self.args.model_path)
else:
init_ckpt = torch.hub.load_state_dict_from_url(url, map_location=self.device)
learn_sigma = False
print("Original diffusion Model loaded.")
elif self.config.data.dataset in ["FFHQ", "AFHQ"]:
model = i_DDPM(self.config.data.dataset)
if self.args.model_path:
init_ckpt = torch.load(self.args.model_path)
else:
init_ckpt = torch.load(MODEL_PATHS[self.config.data.dataset])
learn_sigma = True
print("Improved diffusion Model loaded.")
else:
print('Not implemented dataset')
raise ValueError
model.load_state_dict(init_ckpt)
model.to(self.device)
model = torch.nn.DataParallel(model)
model.eval()
# ---------- Load boundary ----------#
boundary_h = pickle.load(open('./boundary/smile_boundary_h.sav', 'rb'))
a = boundary_h.coef_.reshape(1, 512*8*8).astype(np.float32)
a = a / np.linalg.norm(a)
boundary_z = pickle.load(open('./boundary/smile_boundary_z.sav', 'rb'))
z_a = boundary_z.coef_.reshape(1, 3*256*256).astype(np.float32)
z_a = z_a / np.linalg.norm(z_a) # normalized boundary
print("Boundary loaded! In shape:", np.shape(a), np.shape(z_a))
with torch.no_grad():
#---------------- Invert Image to Latent in case of Deterministic Inversion process -------------------#
if self.args.deterministic_inv:
x_lat_path = os.path.join(self.args.image_folder, f'x_lat_t{self.args.t_0}_ninv{self.args.n_inv_step}.pth')
h_lat_path = os.path.join(self.args.image_folder, f'h_lat_t{self.args.t_0}_ninv{self.args.n_inv_step}.pth')
if not os.path.exists(x_lat_path):
seq_inv = np.linspace(0, 1, self.args.n_inv_step) * self.args.t_0
seq_inv = [int(s) for s in list(seq_inv)]
seq_inv_next = [-1] + list(seq_inv[:-1])
x = x0.clone()
with tqdm(total=len(seq_inv), desc=f"Inversion process ") as progress_bar:
for it, (i, j) in enumerate(zip((seq_inv_next[1:]), (seq_inv[1:]))):
t = (torch.ones(n) * i).to(self.device)
t_prev = (torch.ones(n) * j).to(self.device)
x, mid_h_g = denoising_step(x, t=t, t_next=t_prev, models=model,
logvars=self.logvar,
sampling_type='ddim',
b=self.betas,
eta=0,
learn_sigma=learn_sigma,
ratio=0,
)
progress_bar.update(1)
x_lat = x.clone()
h_lat = mid_h_g.clone()
torch.save(x_lat, x_lat_path)
torch.save(h_lat, h_lat_path)
else:
print('Latent exists.')
x_lat = torch.load(x_lat_path)
h_lat = torch.load(h_lat_path)
print("Finish inversion for the given image!", h_lat.size())
# ----------- Generative Process -----------#
print(f"Sampling type: {self.args.sample_type.upper()} with eta {self.args.eta}, "
f" Steps: {self.args.n_test_step}/{self.args.t_0}")
# ----- Editing space ------ #
start_distance = self.args.start_distance
end_distance = self.args.end_distance
edit_img_number = self.args.edit_img_number
# [-100, 100]
linspace = np.linspace(start_distance, end_distance, edit_img_number)
latent_code = h_lat.cpu().view(1,-1).numpy()
linspace = linspace - latent_code.dot(a.T)
linspace = linspace.reshape(-1, 1).astype(np.float32)
edit_h_seq = latent_code + linspace * a
z_linspace = np.linspace(start_distance, end_distance, edit_img_number)
z_latent_code = x_lat.cpu().view(1,-1).numpy()
z_linspace = z_linspace - z_latent_code.dot(z_a.T)
z_linspace = z_linspace.reshape(-1, 1).astype(np.float32)
edit_z_seq = z_latent_code + z_linspace * z_a
if self.args.n_test_step != 0:
seq_test = np.linspace(0, 1, self.args.n_test_step) * self.args.t_0
seq_test = [int(s) for s in list(seq_test)]
print('Uniform skip type')
else:
seq_test = list(range(self.args.t_0))
print('No skip')
seq_test_next = [-1] + list(seq_test[:-1])
for it in range(self.args.n_iter):
if self.args.deterministic_inv:
x = x_lat.clone()
else:
e = torch.randn_like(x0)
a = (1 - self.betas).cumprod(dim=0)
x = x0 * a[self.args.t_0 - 1].sqrt() + e * (1.0 - a[self.args.t_0 - 1]).sqrt()
tvu.save_image((x + 1) * 0.5, os.path.join(self.args.image_folder,
f'1_lat_ninv{self.args.n_inv_step}.png'))
for k in range(edit_img_number):
time_in_start = time.time()
with tqdm(total=len(seq_test), desc="Generative process {}".format(it)) as progress_bar:
edit_h = torch.from_numpy(edit_h_seq[k]).to(self.device).view(-1, 512, 8, 8)
edit_z = torch.from_numpy(edit_z_seq[k]).to(self.device).view(-1, 3, 256, 256)
for i, j in zip(reversed(seq_test), reversed(seq_test_next)):
t = (torch.ones(n) * i).to(self.device)
t_next = (torch.ones(n) * j).to(self.device)
edit_z, edit_h = denoising_step(edit_z, t=t, t_next=t_next, models=model,
logvars=self.logvar,
sampling_type=self.args.sample_type,
b=self.betas,
eta = 1.0,
learn_sigma=learn_sigma,
ratio=self.args.model_ratio,
hybrid=self.args.hybrid_noise,
hybrid_config=HYBRID_CONFIG,
edit_h=edit_h,
)
x0 = x.clone()
save_edit = "edited_"+str(k)+".png"
tvu.save_image((edit_z + 1) * 0.5, os.path.join("edit_output",save_edit))
time_in_end = time.time()
print(f"Editing for 1 image takes {time_in_end - time_in_start:.4f}s")
# this is for recons
with tqdm(total=len(seq_test), desc="Generative process {}".format(it)) as progress_bar:
for i, j in zip(reversed(seq_test), reversed(seq_test_next)):
t = (torch.ones(n) * i).to(self.device)
t_next = (torch.ones(n) * j).to(self.device)
x_lat, _ = denoising_step(x_lat, t=t, t_next=t_next, models=model,
logvars=self.logvar,
sampling_type=self.args.sample_type,
b=self.betas,
# eta=self.args.eta,
eta = 0.0,
learn_sigma=learn_sigma,
ratio=self.args.model_ratio,
hybrid=self.args.hybrid_noise,
hybrid_config=HYBRID_CONFIG,
edit_h=None,
)
# added intermediate step vis
if (i - 99) % 100 == 0:
tvu.save_image((x + 1) * 0.5, os.path.join(self.args.image_folder,
f'2_lat_t{self.args.t_0}_ninv{self.args.n_inv_step}_ngen{self.args.n_test_step}_{i}_it{it}.png'))
progress_bar.update(1)
x0 = x.clone()
save_edit = "recons.png"
tvu.save_image((x_lat + 1) * 0.5, os.path.join("edit_output",save_edit))
return None