File size: 23,103 Bytes
7bc5051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import argparse
import logging
import math
import os
from typing import List

import numpy as np
import torch
import torch.nn.functional as F
from tqdm import tqdm
from transformers import SiglipImageProcessor, SiglipVisionModel

from dataset import config_utils
from dataset.config_utils import BlueprintGenerator, ConfigSanitizer
from dataset.image_video_dataset import BaseDataset, ItemInfo, save_latent_cache_framepack, ARCHITECTURE_FRAMEPACK
from frame_pack import hunyuan
from frame_pack.framepack_utils import load_image_encoders, load_vae
from hunyuan_model.autoencoder_kl_causal_3d import AutoencoderKLCausal3D
from frame_pack.clip_vision import hf_clip_vision_encode
import cache_latents

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)


def encode_and_save_batch(
    vae: AutoencoderKLCausal3D,
    feature_extractor: SiglipImageProcessor,
    image_encoder: SiglipVisionModel,
    batch: List[ItemInfo],
    latent_window_size: int,
    vanilla_sampling: bool = False,
    one_frame: bool = False,
):
    """Encode a batch of original RGB videos and save FramePack section caches."""
    if one_frame:
        encode_and_save_batch_one_frame(vae, feature_extractor, image_encoder, batch, latent_window_size, vanilla_sampling)
        return

    # Stack batch into tensor (B,C,F,H,W) in RGB order
    contents = torch.stack([torch.from_numpy(item.content) for item in batch])
    if len(contents.shape) == 4:
        contents = contents.unsqueeze(1)  # B, H, W, C -> B, F, H, W, C

    contents = contents.permute(0, 4, 1, 2, 3).contiguous()  # B, C, F, H, W
    contents = contents.to(vae.device, dtype=vae.dtype)
    contents = contents / 127.5 - 1.0  # normalize to [-1, 1]

    height, width = contents.shape[3], contents.shape[4]
    if height < 8 or width < 8:
        item = batch[0]  # other items should have the same size
        raise ValueError(f"Image or video size too small: {item.item_key} and {len(batch) - 1} more, size: {item.original_size}")

    # calculate latent frame count from original frame count (4n+1)
    latent_f = (batch[0].frame_count - 1) // 4 + 1

    # calculate the total number of sections (excluding the first frame, divided by window size)
    total_latent_sections = math.floor((latent_f - 1) / latent_window_size)
    if total_latent_sections < 1:
        min_frames_needed = latent_window_size * 4 + 1
        raise ValueError(
            f"Not enough frames for FramePack: {batch[0].frame_count} frames ({latent_f} latent frames), minimum required: {min_frames_needed} frames ({latent_window_size+1} latent frames)"
        )

    # actual latent frame count (aligned to section boundaries)
    latent_f_aligned = total_latent_sections * latent_window_size + 1 if not one_frame else 1

    # actual video frame count
    frame_count_aligned = (latent_f_aligned - 1) * 4 + 1
    if frame_count_aligned != batch[0].frame_count:
        logger.info(
            f"Frame count mismatch: required={frame_count_aligned} != actual={batch[0].frame_count}, trimming to {frame_count_aligned}"
        )
        contents = contents[:, :, :frame_count_aligned, :, :]

    latent_f = latent_f_aligned  # Update to the aligned value

    # VAE encode (list of tensor -> stack)
    latents = hunyuan.vae_encode(contents, vae)  # include scaling factor
    latents = latents.to("cpu")  # (B, C, latent_f, H/8, W/8)

    # Vision encoding per‑item (once)
    images = np.stack([item.content[0] for item in batch], axis=0)  # B, H, W, C

    # encode image with image encoder
    image_embeddings = []
    with torch.no_grad():
        for image in images:
            image_encoder_output = hf_clip_vision_encode(image, feature_extractor, image_encoder)
            image_embeddings.append(image_encoder_output.last_hidden_state)
    image_embeddings = torch.cat(image_embeddings, dim=0)  # B, LEN, 1152
    image_embeddings = image_embeddings.to("cpu")  # Save memory

    if not vanilla_sampling:
        # padding is reversed for inference (future to past)
        latent_paddings = list(reversed(range(total_latent_sections)))
        # Note: The padding trick for inference. See the paper for details.
        if total_latent_sections > 4:
            latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]

        for b, item in enumerate(batch):
            original_latent_cache_path = item.latent_cache_path
            video_lat = latents[b : b + 1]  # keep batch dim, 1, C, F, H, W

            # emulate inference step (history latents)
            # Note: In inference, history_latents stores *generated* future latents.
            # Here, for caching, we just need its shape and type for clean_* tensors.
            # The actual content doesn't matter much as clean_* will be overwritten.
            history_latents = torch.zeros(
                (1, video_lat.shape[1], 1 + 2 + 16, video_lat.shape[3], video_lat.shape[4]), dtype=video_lat.dtype
            )  # C=16 for HY

            latent_f_index = latent_f - latent_window_size  # Start from the last section
            section_index = total_latent_sections - 1

            for latent_padding in latent_paddings:
                is_last_section = section_index == 0  # the last section in inference order == the first section in time
                latent_padding_size = latent_padding * latent_window_size
                if is_last_section:
                    assert latent_f_index == 1, "Last section should be starting from frame 1"

                # indices generation (same as inference)
                indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
                (
                    clean_latent_indices_pre,  # Index for start_latent
                    blank_indices,  # Indices for padding (future context in inference)
                    latent_indices,  # Indices for the target latents to predict
                    clean_latent_indices_post,  # Index for the most recent history frame
                    clean_latent_2x_indices,  # Indices for the next 2 history frames
                    clean_latent_4x_indices,  # Indices for the next 16 history frames
                ) = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)

                # Indices for clean_latents (start + recent history)
                clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)

                # clean latents preparation (emulating inference)
                clean_latents_pre = video_lat[:, :, 0:1, :, :]  # Always the first frame (start_latent)
                clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, : 1 + 2 + 16, :, :].split(
                    [1, 2, 16], dim=2
                )
                clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)  # Combine start frame + placeholder

                # Target latents for this section (ground truth)
                target_latents = video_lat[:, :, latent_f_index : latent_f_index + latent_window_size, :, :]

                # save cache (file path is inside item.latent_cache_path pattern), remove batch dim
                item.latent_cache_path = append_section_idx_to_latent_cache_path(original_latent_cache_path, section_index)
                save_latent_cache_framepack(
                    item_info=item,
                    latent=target_latents.squeeze(0),  # Ground truth for this section
                    latent_indices=latent_indices.squeeze(0),  # Indices for the ground truth section
                    clean_latents=clean_latents.squeeze(0),  # Start frame + history placeholder
                    clean_latent_indices=clean_latent_indices.squeeze(0),  # Indices for start frame + history placeholder
                    clean_latents_2x=clean_latents_2x.squeeze(0),  # History placeholder
                    clean_latent_2x_indices=clean_latent_2x_indices.squeeze(0),  # Indices for history placeholder
                    clean_latents_4x=clean_latents_4x.squeeze(0),  # History placeholder
                    clean_latent_4x_indices=clean_latent_4x_indices.squeeze(0),  # Indices for history placeholder
                    image_embeddings=image_embeddings[b],
                )

                if is_last_section:  # If this was the first section generated in inference (time=0)
                    # History gets the start frame + the generated first section
                    generated_latents_for_history = video_lat[:, :, : latent_window_size + 1, :, :]
                else:
                    # History gets the generated current section
                    generated_latents_for_history = target_latents  # Use true latents as stand-in for generated

                history_latents = torch.cat([generated_latents_for_history, history_latents], dim=2)

                section_index -= 1
                latent_f_index -= latent_window_size

    else:
        # Vanilla Sampling Logic
        for b, item in enumerate(batch):
            original_latent_cache_path = item.latent_cache_path
            video_lat = latents[b : b + 1]  # Keep batch dim: 1, C, F_aligned, H, W
            img_emb = image_embeddings[b]  # LEN, 1152

            for section_index in range(total_latent_sections):
                target_start_f = section_index * latent_window_size + 1
                target_end_f = target_start_f + latent_window_size
                target_latents = video_lat[:, :, target_start_f:target_end_f, :, :]
                start_latent = video_lat[:, :, 0:1, :, :]

                # Clean latents preparation (Vanilla)
                clean_latents_total_count = 1 + 2 + 16
                history_latents = torch.zeros(
                    size=(1, 16, clean_latents_total_count, video_lat.shape[-2], video_lat.shape[-1]),
                    device=video_lat.device,
                    dtype=video_lat.dtype,
                )

                history_start_f = 0
                video_start_f = target_start_f - clean_latents_total_count
                copy_count = clean_latents_total_count
                if video_start_f < 0:
                    history_start_f = -video_start_f
                    copy_count = clean_latents_total_count - history_start_f
                    video_start_f = 0
                if copy_count > 0:
                    history_latents[:, :, history_start_f:] = video_lat[:, :, video_start_f : video_start_f + copy_count, :, :]

                # indices generation (Vanilla): copy from FramePack-F1
                indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
                (
                    clean_latent_indices_start,
                    clean_latent_4x_indices,
                    clean_latent_2x_indices,
                    clean_latent_1x_indices,
                    latent_indices,
                ) = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
                clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)

                clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents.split([16, 2, 1], dim=2)
                clean_latents = torch.cat([start_latent, clean_latents_1x], dim=2)

                # Save cache
                item.latent_cache_path = append_section_idx_to_latent_cache_path(original_latent_cache_path, section_index)
                save_latent_cache_framepack(
                    item_info=item,
                    latent=target_latents.squeeze(0),
                    latent_indices=latent_indices.squeeze(0),  # Indices for target section i
                    clean_latents=clean_latents.squeeze(0),  # Past clean frames
                    clean_latent_indices=clean_latent_indices.squeeze(0),  # Indices for clean_latents_pre/post
                    clean_latents_2x=clean_latents_2x.squeeze(0),  # Past clean frames (2x)
                    clean_latent_2x_indices=clean_latent_2x_indices.squeeze(0),  # Indices for clean_latents_2x
                    clean_latents_4x=clean_latents_4x.squeeze(0),  # Past clean frames (4x)
                    clean_latent_4x_indices=clean_latent_4x_indices.squeeze(0),  # Indices for clean_latents_4x
                    image_embeddings=img_emb,
                    # Note: We don't explicitly save past_offset_indices,
                    # but its size influences the absolute values in other indices.
                )


def encode_and_save_batch_one_frame(
    vae: AutoencoderKLCausal3D,
    feature_extractor: SiglipImageProcessor,
    image_encoder: SiglipVisionModel,
    batch: List[ItemInfo],
    latent_window_size: int,
    vanilla_sampling: bool = False,
):
    # item.content: target image (H, W, C)
    # item.control_content: start image (H, W, C)

    # Stack batch into tensor (B,F,H,W,C) in RGB order.
    contents = torch.stack(
        [torch.stack([torch.from_numpy(item.control_content), torch.from_numpy(item.content)]) for item in batch]
    )

    contents = contents.permute(0, 4, 1, 2, 3).contiguous()  # B, C, F, H, W
    contents = contents.to(vae.device, dtype=vae.dtype)
    contents = contents / 127.5 - 1.0  # normalize to [-1, 1]

    height, width = contents.shape[3], contents.shape[4]
    if height < 8 or width < 8:
        item = batch[0]  # other items should have the same size
        raise ValueError(f"Image or video size too small: {item.item_key} and {len(batch) - 1} more, size: {item.original_size}")

    # VAE encode (list of tensor -> stack)
    start_latents = hunyuan.vae_encode(contents[:, :, 0:1], vae)  # include scaling factor
    start_latents = start_latents.to("cpu")  # (B, C, 1, H/8, W/8)
    latents = hunyuan.vae_encode(contents[:, :, 1:], vae)  # include scaling factor
    latents = latents.to("cpu")  # (B, C, 1, H/8, W/8)

    # Vision encoding per‑item (once): use control content because it is the start image
    images = [item.control_content for item in batch]  # list of [H, W, C]

    # encode image with image encoder
    image_embeddings = []
    with torch.no_grad():
        for image in images:
            image_encoder_output = hf_clip_vision_encode(image, feature_extractor, image_encoder)
            image_embeddings.append(image_encoder_output.last_hidden_state)
    image_embeddings = torch.cat(image_embeddings, dim=0)  # B, LEN, 1152
    image_embeddings = image_embeddings.to("cpu")  # Save memory

    # history latents is always zeroes for one frame training
    history_latents = torch.zeros(
        (1, latents.shape[1], 1 + 2 + 16, latents.shape[3], latents.shape[4]), dtype=latents.dtype
    )  # C=16 for HY

    # indices generation (same as inference)
    indices = torch.arange(0, sum([1, latent_window_size, 1, 2, 16])).unsqueeze(0)
    (
        clean_latent_indices_pre,  # Index for start_latent
        latent_indices,  # Indices for the target latents to predict
        clean_latent_indices_post,  # Index for the most recent history frame
        clean_latent_2x_indices,  # Indices for the next 2 history frames
        clean_latent_4x_indices,  # Indices for the next 16 history frames
    ) = indices.split([1, latent_window_size, 1, 2, 16], dim=1)

    # Indices for clean_latents (start + recent history)
    latent_indices = latent_indices[:, -1:]  # Only the last index is used for one frame training
    clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)

    # clean latents preparation for all items (emulating inference)
    clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, : 1 + 2 + 16, :, :].split([1, 2, 16], dim=2)

    for b, item in enumerate(batch):
        original_latent_cache_path = item.latent_cache_path

        # clean latents preparation (emulating inference)
        clean_latents_pre = start_latents[b : b + 1]
        clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)  # Combine start frame + placeholder

        # Target latents for this section (ground truth)
        target_latents = latents[b : b + 1]

        # save cache (file path is inside item.latent_cache_path pattern), remove batch dim
        save_latent_cache_framepack(
            item_info=item,
            latent=target_latents.squeeze(0),  # Ground truth for this section
            latent_indices=latent_indices.squeeze(0),  # Indices for the ground truth section
            clean_latents=clean_latents.squeeze(0),  # Start frame + history placeholder
            clean_latent_indices=clean_latent_indices.squeeze(0),  # Indices for start frame + history placeholder
            clean_latents_2x=clean_latents_2x.squeeze(0),  # History placeholder
            clean_latent_2x_indices=clean_latent_2x_indices.squeeze(0),  # Indices for history placeholder
            clean_latents_4x=clean_latents_4x.squeeze(0),  # History placeholder
            clean_latent_4x_indices=clean_latent_4x_indices.squeeze(0),  # Indices for history placeholder
            image_embeddings=image_embeddings[b],
        )


def framepack_setup_parser(parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
    parser.add_argument("--image_encoder", type=str, required=True, help="Image encoder (CLIP) checkpoint path or directory")
    parser.add_argument("--latent_window_size", type=int, default=9, help="FramePack latent window size (default 9)")
    parser.add_argument(
        "--f1",
        action="store_true",
        help="Generate cache for F1 model (vanilla (autoregressive) sampling) instead of Inverted anti-drifting (plain FramePack)",
    )
    parser.add_argument(
        "--one_frame",
        action="store_true",
        help="Generate cache for one frame training (single frame, single section). latent_window_size is used as the index of the target frame.",
    )
    return parser


def main(args: argparse.Namespace):
    device = args.device if hasattr(args, "device") and args.device else ("cuda" if torch.cuda.is_available() else "cpu")
    device = torch.device(device)

    # Load dataset config
    blueprint_generator = BlueprintGenerator(ConfigSanitizer())
    logger.info(f"Load dataset config from {args.dataset_config}")
    user_config = config_utils.load_user_config(args.dataset_config)
    blueprint = blueprint_generator.generate(user_config, args, architecture=ARCHITECTURE_FRAMEPACK)
    train_dataset_group = config_utils.generate_dataset_group_by_blueprint(blueprint.dataset_group)

    datasets = train_dataset_group.datasets

    if args.debug_mode is not None:
        cache_latents.show_datasets(
            datasets, args.debug_mode, args.console_width, args.console_back, args.console_num_images, fps=16
        )
        return

    assert args.vae is not None, "vae checkpoint is required"

    logger.info(f"Loading VAE model from {args.vae}")
    vae = load_vae(args.vae, args.vae_chunk_size, args.vae_spatial_tile_sample_min_size, device=device)
    vae.to(device)

    logger.info(f"Loading image encoder from {args.image_encoder}")
    feature_extractor, image_encoder = load_image_encoders(args)
    image_encoder.eval()
    image_encoder.to(device)

    logger.info(f"Cache generation mode: {'Vanilla Sampling' if args.f1 else 'Inference Emulation'}")

    # encoding closure
    def encode(batch: List[ItemInfo]):
        encode_and_save_batch(vae, feature_extractor, image_encoder, batch, args.latent_window_size, args.f1, args.one_frame)

    # reuse core loop from cache_latents with no change
    encode_datasets_framepack(datasets, encode, args)


def append_section_idx_to_latent_cache_path(latent_cache_path: str, section_idx: int) -> str:
    tokens = latent_cache_path.split("_")
    tokens[-3] = f"{tokens[-3]}-{section_idx:04d}"  # append section index to "frame_pos-count"
    return "_".join(tokens)


def encode_datasets_framepack(datasets: list[BaseDataset], encode: callable, args: argparse.Namespace):
    num_workers = args.num_workers if args.num_workers is not None else max(1, os.cpu_count() - 1)
    for i, dataset in enumerate(datasets):
        logger.info(f"Encoding dataset [{i}]")
        all_latent_cache_paths = []
        for _, batch in tqdm(dataset.retrieve_latent_cache_batches(num_workers)):
            batch: list[ItemInfo] = batch  # type: ignore

            # latent_cache_path is "{basename}_{w:04d}x{h:04d}_{self.architecture}.safetensors"
            # For video dataset,we expand it to "{basename}_{section_idx:04d}_{w:04d}x{h:04d}_{self.architecture}.safetensors"
            filtered_batch = []
            for item in batch:
                if item.frame_count is None:
                    # image dataset
                    all_latent_cache_paths.append(item.latent_cache_path)
                    all_existing = os.path.exists(item.latent_cache_path)
                else:
                    latent_f = (item.frame_count - 1) // 4 + 1
                    num_sections = max(1, math.floor((latent_f - 1) / args.latent_window_size))  # min 1 section
                    all_existing = True
                    for sec in range(num_sections):
                        p = append_section_idx_to_latent_cache_path(item.latent_cache_path, sec)
                        all_latent_cache_paths.append(p)
                        all_existing = all_existing and os.path.exists(p)

                if not all_existing:  # if any section cache is missing
                    filtered_batch.append(item)

            if args.skip_existing:
                if len(filtered_batch) == 0:  # all sections exist
                    logger.info(f"All sections exist for {batch[0].item_key}, skipping")
                    continue
                batch = filtered_batch  # update batch to only missing sections

            bs = args.batch_size if args.batch_size is not None else len(batch)
            for i in range(0, len(batch), bs):
                encode(batch[i : i + bs])

        # normalize paths
        all_latent_cache_paths = [os.path.normpath(p) for p in all_latent_cache_paths]
        all_latent_cache_paths = set(all_latent_cache_paths)

        # remove old cache files not in the dataset
        all_cache_files = dataset.get_all_latent_cache_files()
        for cache_file in all_cache_files:
            if os.path.normpath(cache_file) not in all_latent_cache_paths:
                if args.keep_cache:
                    logger.info(f"Keep cache file not in the dataset: {cache_file}")
                else:
                    os.remove(cache_file)
                    logger.info(f"Removed old cache file: {cache_file}")


if __name__ == "__main__":
    parser = cache_latents.setup_parser_common()
    parser = cache_latents.hv_setup_parser(parser)  # VAE
    parser = framepack_setup_parser(parser)

    args = parser.parse_args()

    if args.vae_dtype is not None:
        raise ValueError("VAE dtype is not supported in FramePack")
    # if args.batch_size != 1:
    #     args.batch_size = 1
    #     logger.info("Batch size is set to 1 for FramePack.")

    main(args)