--- base_model: - stabilityai/stable-diffusion-xl-base-1.0 pipeline_tag: text-to-image tags: - art ---

The Superposition of Diffusion Models Using the Itô Density Estimator: Pipeline

arXiv

This pipeline shows how to superimpose different text prompts from [Stable Diffusion-XL 1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) based the paper [The Superposition of Diffusion Models Using the Itô Density Estimator](https://www.arxiv.org/abs/2412.17762). The authors would like to thank Viktor Ohanesian for developing the SD-XL pipeline.

drawing

## Requirements This pipeline can be run with the following packages & versions: - `PyTorch 2.5.1` - `Diffusers 0.32.1` - `Accelerate 1.2.1` - `Transformers 4.47.1` You can install these with: ``` pip install torch pip install diffusers accelerate transformers ``` ## Example usage ``` from PIL import Image from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained("superdiff/superdiff-sdxl-v1-0", custom_pipeline='pipeline', trust_remote_code=True) output = pipeline("a flamingo", "a candy cane", seed=1, num_inference_steps=200, batch_size=1) image = Image.fromarray(output[0]) image.save("superdiff_output.png") ``` Arguments that can be set by user in `pipeline()`: - `prompt_1` [required]: text prompt describing first concept to superimpose (e.g. "a flamingo") - `prompt_2`[required]: text prompt describing second concept to superimpose (e.g. "a candy cane") - `seed`[optional: default=None]: seed for random noise generator for reproducibility; for non-deterministic outputs, set to `None` - `num_inference_steps`[optional: default=200]: number of denoising steps - `batch_size` [optional: default=1]: batch size - `guidance_scale` [optional: default=7.5]: scale for classifier-free guidance - `height`, `width` [optional: default=1024]: height and width of generated images (we recommend leaving it at 1024!) ## Citation **BibTeX:** ``` @article{skreta2024superposition, title={The Superposition of Diffusion Models Using the It$\backslash$\^{} o Density Estimator}, author={Skreta, Marta and Atanackovic, Lazar and Bose, Avishek Joey and Tong, Alexander and Neklyudov, Kirill}, journal={arXiv preprint arXiv:2412.17762}, year={2024} } ```