File size: 11,547 Bytes
f9ffbd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
from jittor.dataset.mnist import MNIST
import jittor.transform as transform
from jittor.dataset.dataset import ImageFolder
import jittor as jt
from jittor import nn, Module
import os
import argparse
from time import *
import PIL.Image as Image
import numpy as np
import matplotlib.pyplot as plt
plt.switch_backend('agg')
jt.flags.use_cuda = 1
# 参数设定
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='celebA', help='训练数据集类型')
parser.add_argument('--train_dir', type=str, default='D:\\Image_Generation_Learn\\Dataset\\CelebA_train', help='训练数据集地址')
parser.add_argument('--eval_dir', type=str, default='D:\\Image_Generation_Learn\\Dataset\\CelebA_train', help='训练数据集地址')
parser.add_argument('--n_epochs', type=int, default=100, help='训练的时期数')
parser.add_argument('--batch_size', type=int, default=64, help='批次大小')
parser.add_argument('--lr', type=float, default=0.0002, help='学习率')
parser.add_argument('--b1', type=float, default=0.5, help='梯度的一阶动量衰减')
parser.add_argument('--b2', type=float, default=0.999, help='梯度的一阶动量衰减')
parser.add_argument('--img_size', type=int, default=112, help='每个图像尺寸的大小')
parser.add_argument('--celebA_channels', type=int, default=3, help='图像通道数')
parser.add_argument('--mnist_channels', type=int, default=1, help='图像通道数')
parser.add_argument('--img_row', type=int, default=5, help='图像样本之间的间隔')
parser.add_argument('--img_column', type=int, default=5, help='图像样本之间的间隔')
'''
parser.add_argument('--n_cpu', type=int, default=8, help='批处理生成期间要使用的 cpu 线程数')
parser.add_argument('--latent_dim', type=int, default=100, help='潜在空间的维度')
parser.add_argument('--sample_interval', type=int, default=400, help='图像样本之间的间隔')
'''
opt = parser.parse_args()
print(opt)
# 训练集加载程序
def DataLoader(dataclass, img_size, batch_size, train_dir, eval_dir):
if dataclass == 'MNIST':
Transform = transform.Compose([
transform.Resize(size=img_size),
transform.Gray(),
transform.ImageNormalize(mean=[0.5], std=[0.5])])
train_loader = MNIST (data_root=train_dir, train=True, transform=Transform).set_attrs(batch_size=batch_size, shuffle=True)
eval_loader = MNIST (data_root=eval_dir, train=False, transform = Transform).set_attrs(batch_size=1, shuffle=True)
elif dataclass == 'celebA':
Transform = transform.Compose([
transform.Resize(size=img_size),
transform.ImageNormalize(mean=[0.5, 0.5, 0.5],std=[0.5, 0.5, 0.5])])
train_loader = ImageFolder(train_dir)\
.set_attrs(transform=Transform, batch_size=batch_size, shuffle=True)
eval_loader = ImageFolder(eval_dir)\
.set_attrs(transform=Transform, batch_size=batch_size, shuffle=True)
else:
print("没有加载%s数据集的程序,请选择MNIST或者celebA!" % dataclass)
dataclass = input("请输入:MNIST或者celebA:")
DataLoader(dataclass, img_size, batch_size,train_dir, eval_dir)
return train_loader, eval_loader
# 加载训练集数据
train_loader, eval_loader = DataLoader(dataclass=opt.task,img_size=opt.img_size,batch_size=opt.batch_size,train_dir=opt.train_dir,eval_dir=opt.eval_dir)
# 生成器
class generator(Module):
def __init__(self, dim=3):
super(generator, self).__init__()
self.fc = nn.Linear(1024, 7*7*256)
self.fc_bn = nn.BatchNorm(256)
self.deconv1 = nn.ConvTranspose(256, 256, 3, 2, 1, 1)
self.deconv1_bn = nn.BatchNorm(256)
self.deconv2 = nn.ConvTranspose(256, 256, 3, 1, 1)
self.deconv2_bn = nn.BatchNorm(256)
self.deconv3 = nn.ConvTranspose(256, 256, 3, 2, 1, 1)
self.deconv3_bn = nn.BatchNorm(256)
self.deconv4 = nn.ConvTranspose(256, 256, 3, 1, 1)
self.deconv4_bn = nn.BatchNorm(256)
self.deconv5 = nn.ConvTranspose(256, 128, 3, 2, 1, 1)
self.deconv5_bn = nn.BatchNorm(128)
self.deconv6 = nn.ConvTranspose(128, 64, 3, 2, 1, 1)
self.deconv6_bn = nn.BatchNorm(64)
self.deconv7 = nn.ConvTranspose(64 , dim, 3, 1, 1)
self.relu = nn.ReLU()
self.tanh = nn.Tanh()
def execute(self, input):
x = self.fc(input).reshape((-1, 256, 7, 7))
x = self.relu(self.fc_bn(x))
x = self.relu(self.deconv1_bn(self.deconv1(x)))
x = self.relu(self.deconv2_bn(self.deconv2(x)))
x = self.relu(self.deconv3_bn(self.deconv3(x)))
x = self.relu(self.deconv4_bn(self.deconv4(x)))
x = self.relu(self.deconv5_bn(self.deconv5(x)))
x = self.relu(self.deconv6_bn(self.deconv6(x)))
x = self.tanh(self.deconv7(x))
return x
# 判别器
class discriminator(nn.Module):
def __init__(self, dim=3):
super(discriminator, self).__init__()
self.conv1 = nn.Conv(dim, 64, 5, 2, 2)
self.conv2 = nn.Conv(64, 128, 5, 2, 2)
self.conv2_bn = nn.BatchNorm(128)
self.conv3 = nn.Conv(128, 256, 5, 2, 2)
self.conv3_bn = nn.BatchNorm(256)
self.conv4 = nn.Conv(256, 512, 5, 2, 2)
self.conv4_bn = nn.BatchNorm(512)
self.fc = nn.Linear(512*7*7, 1)
self.leaky_relu = nn.Leaky_relu()
def execute(self, input):
x = self.leaky_relu(self.conv1(input), 0.2)
x = self.leaky_relu(self.conv2_bn(self.conv2(x)), 0.2)
x = self.leaky_relu(self.conv3_bn(self.conv3(x)), 0.2)
x = self.leaky_relu(self.conv4_bn(self.conv4(x)), 0.2)
x = x.reshape((x.shape[0], 512*7*7))
x = self.fc(x)
return x
# 损失函数
def ls_loss(x, b):
mini_batch = x.shape[0]
y_real_ = jt.ones((mini_batch,))
y_fake_ = jt.zeros((mini_batch,))
if b:
return (x-y_real_).sqr().mean()
else:
return (x-y_fake_).sqr().mean()
# 定义图像拼接函数
def image_compose(array,IMAGE_SIZE=128,IMAGE_SAVE_PATH='./images_celebA'):
to_image = Image.new('RGB', (opt.img_column * IMAGE_SIZE, opt.img_row * IMAGE_SIZE)) # 创建一个新图
randomList = np.random.randint(0,array.shape[0],25)
img_list = list()
for i in randomList:
# print(type(array[i]))
img = Image.fromarray(np.uint8(array[i].transpose((1,2,0))*255))
img_list.append(img)
# 循环遍历,把每张图片按顺序粘贴到对应位置上
for y in range(1, opt.img_row + 1):
for x in range(1, opt.img_column + 1):
from_image = img_list.pop().resize((IMAGE_SIZE, IMAGE_SIZE), Image.ANTIALIAS)
to_image.paste(from_image, ((x - 1) * IMAGE_SIZE, (y - 1) * IMAGE_SIZE))
return to_image.save(IMAGE_SAVE_PATH) # 保存新图
def save_img_result(num_epoch, G, path = './images_celebA/result.png'):
fixed_z_ = jt.init.gauss((5 * 5, 1024), 'float') # fixed noise
z_ = fixed_z_
G.eval()
test_images = G(z_)
G.train()
size_figure_grid = 5
fig, ax = plt.subplots(size_figure_grid, size_figure_grid, figsize=(5, 5))
for i in range(size_figure_grid):
for j in range(size_figure_grid):
ax[i, j].get_xaxis().set_visible(False)
ax[i, j].get_yaxis().set_visible(False)
for k in range(5*5):
i = k // 5
j = k % 5
ax[i, j].cla()
if opt.task=="MNIST":
ax[i, j].imshow((test_images[k, 0].data+1)/2, cmap='gray')
else:
ax[i, j].imshow((test_images[k].data.transpose(1, 2, 0)+1)/2)
label = 'Epoch {0}'.format(num_epoch)
fig.text(0.5, 0.04, label, ha='center')
plt.savefig(path)
plt.close()
def train(epoch):
for batch_idx, (x_, target) in enumerate(train_loader):
mini_batch = x_.shape[0]
# 判别器训练 将假图片尽可能的判别为0
D_result = D(x_) #输入[128,3,112,112,] 生成[128,1] 128位batch_size
D_real_loss = ls_loss(D_result, True) #真实图片的损失
z_ = jt.init.gauss((mini_batch, 1024), 'float') #生成随机噪声,大小为[128,1024]
G_result = G(z_) #输入噪声,生成[128,3,112,112,]
D_result_ = D(G_result) #输入由噪声生成的图像,得到判别器的预测值
D_fake_loss = ls_loss(D_result_, False) #假图片的损失
D_train_loss = D_real_loss + D_fake_loss
D_train_loss.sync()
D_optim.step(D_train_loss)
# 生成器训练 让生成器尽可能的生成真实的照片
z_ = jt.init.gauss((mini_batch, 1024), 'float') #生成噪声
G_result = G(z_) #由噪声生成假图片
D_result = D(G_result) #将假图片输入到判别器,得到预测值
G_train_loss = ls_loss(D_result, True) #将假图片的预测值与1做损失,目的是未来让生成器尽可能的生成真实的照片
G_train_loss.sync()
G_optim.step(G_train_loss)
if (batch_idx%100==0 ):
print("train: epoch{} batch_idx{} D training loss = {} G training loss = {} ".format(epoch,batch_idx,D_train_loss.data.mean(),G_train_loss.data.mean()))
# if((epoch)%5==0 or epoch==0 and batch_idx==100):
# image_compose(G_result.data,128,"./imgs/epoch{}-G_{}.jpg".format(epoch,task))
def validate(epoch):
D_losses = []
G_losses = []
G.eval()
D.eval()
for batch_idx, (x_, target) in enumerate(eval_loader):
mini_batch = x_.shape[0]
# 判别器损失计算
D_result = D(x_)
D_real_loss = ls_loss(D_result, True)
z_ = jt.init.gauss((mini_batch, 1024), 'float')
G_result = G(z_)
D_result_ = D(G_result)
D_fake_loss = ls_loss(D_result_, False)
D_train_loss = D_real_loss + D_fake_loss
D_losses.append(D_train_loss.data.mean())
# 生成器损失计算
z_ = jt.init.gauss((mini_batch, 1024), 'float')
G_result = G(z_)
D_result = D(G_result)
G_train_loss = ls_loss(D_result, True)
G_losses.append(G_train_loss.data.mean())
G.train()
D.train()
print("validate: epoch{}\tbatch_idx{}\tD training loss = {}\tG training loss = {}"
.format(epoch, batch_idx, str(np.array(D_losses).mean()), str(np.array(G_losses).mean())))
# 初始化生成器和判别器 (通道数)
G = generator(opt.celebA_channels)
D = discriminator(opt.celebA_channels)
# 优化器 0.0002 (0.5, 0.999)
G_optim = jt.nn.Adam(G.parameters(), opt.lr, betas=(opt.b1, opt.b2))
D_optim = jt.nn.Adam(D.parameters(), opt.lr, betas=(opt.b1, opt.b2))
# 结果存储地址
save_img_path = './images_celebA'
save_model_path = './save_model_celebA'
os.makedirs(save_img_path, exist_ok=True)
os.makedirs(save_model_path, exist_ok=True)
G.load_parameters(jt.load(save_model_path+'/generator_celebA.pkl'))
D.load_parameters(jt.load(save_model_path+'/discriminator_celebA.pkl'))
for epoch in range(37,opt.n_epochs):
print ('number of epochs', epoch)
train(epoch)
#validate(epoch)
result_img_path = save_img_path + '/' + str(epoch) + '.png'
save_img_result(epoch, G, path=result_img_path)
# 指定地址保存训练好的模型
if (epoch+1) % 10 == 0:
G.save(save_model_path+"/generator_celebA.pkl")
D.save(save_model_path+"/discriminator_celebA.pkl")
|