File size: 11,547 Bytes
f9ffbd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
from jittor.dataset.mnist import MNIST
import jittor.transform as transform
from jittor.dataset.dataset import ImageFolder
import jittor as jt
from jittor import nn, Module
import os
import argparse
from  time import *
import PIL.Image as Image
import numpy as np
import matplotlib.pyplot as plt
plt.switch_backend('agg')

jt.flags.use_cuda = 1

# 参数设定
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='celebA', help='训练数据集类型')
parser.add_argument('--train_dir', type=str, default='D:\\Image_Generation_Learn\\Dataset\\CelebA_train', help='训练数据集地址')
parser.add_argument('--eval_dir', type=str, default='D:\\Image_Generation_Learn\\Dataset\\CelebA_train', help='训练数据集地址')
parser.add_argument('--n_epochs', type=int, default=100, help='训练的时期数')
parser.add_argument('--batch_size', type=int, default=64, help='批次大小')
parser.add_argument('--lr', type=float, default=0.0002, help='学习率')
parser.add_argument('--b1', type=float, default=0.5, help='梯度的一阶动量衰减')
parser.add_argument('--b2', type=float, default=0.999, help='梯度的一阶动量衰减')
parser.add_argument('--img_size', type=int, default=112, help='每个图像尺寸的大小')
parser.add_argument('--celebA_channels', type=int, default=3, help='图像通道数')
parser.add_argument('--mnist_channels', type=int, default=1, help='图像通道数')
parser.add_argument('--img_row', type=int, default=5, help='图像样本之间的间隔')
parser.add_argument('--img_column', type=int, default=5, help='图像样本之间的间隔')
'''
parser.add_argument('--n_cpu', type=int, default=8, help='批处理生成期间要使用的 cpu 线程数')
parser.add_argument('--latent_dim', type=int, default=100, help='潜在空间的维度')
parser.add_argument('--sample_interval', type=int, default=400, help='图像样本之间的间隔')
'''
opt = parser.parse_args()
print(opt)

# 训练集加载程序
def DataLoader(dataclass, img_size, batch_size, train_dir, eval_dir):
    if dataclass == 'MNIST':
        Transform = transform.Compose([
            transform.Resize(size=img_size),
            transform.Gray(),
            transform.ImageNormalize(mean=[0.5], std=[0.5])])
        train_loader = MNIST (data_root=train_dir, train=True, transform=Transform).set_attrs(batch_size=batch_size, shuffle=True)
        eval_loader = MNIST (data_root=eval_dir, train=False, transform = Transform).set_attrs(batch_size=1, shuffle=True)
    elif dataclass == 'celebA':
        Transform = transform.Compose([
            transform.Resize(size=img_size),
            transform.ImageNormalize(mean=[0.5, 0.5, 0.5],std=[0.5, 0.5, 0.5])])
        train_loader = ImageFolder(train_dir)\
            .set_attrs(transform=Transform, batch_size=batch_size, shuffle=True)
        eval_loader = ImageFolder(eval_dir)\
            .set_attrs(transform=Transform, batch_size=batch_size, shuffle=True)
    else:
        print("没有加载%s数据集的程序,请选择MNIST或者celebA!" % dataclass)
        dataclass = input("请输入:MNIST或者celebA:")
        DataLoader(dataclass, img_size, batch_size,train_dir, eval_dir)
    
    return train_loader, eval_loader

# 加载训练集数据
train_loader, eval_loader = DataLoader(dataclass=opt.task,img_size=opt.img_size,batch_size=opt.batch_size,train_dir=opt.train_dir,eval_dir=opt.eval_dir)

# 生成器
class generator(Module):
    def __init__(self, dim=3):
        super(generator, self).__init__()
        self.fc = nn.Linear(1024, 7*7*256)
        self.fc_bn = nn.BatchNorm(256)
        self.deconv1 = nn.ConvTranspose(256, 256, 3, 2, 1, 1)
        self.deconv1_bn = nn.BatchNorm(256)
        self.deconv2 = nn.ConvTranspose(256, 256, 3, 1, 1)
        self.deconv2_bn = nn.BatchNorm(256)
        self.deconv3 = nn.ConvTranspose(256, 256, 3, 2, 1, 1)
        self.deconv3_bn = nn.BatchNorm(256)
        self.deconv4 = nn.ConvTranspose(256, 256, 3, 1, 1)
        self.deconv4_bn = nn.BatchNorm(256)
        self.deconv5 = nn.ConvTranspose(256, 128, 3, 2, 1, 1)
        self.deconv5_bn = nn.BatchNorm(128)
        self.deconv6 = nn.ConvTranspose(128, 64, 3, 2, 1, 1)
        self.deconv6_bn = nn.BatchNorm(64)
        self.deconv7 = nn.ConvTranspose(64 , dim, 3, 1, 1)
        self.relu = nn.ReLU()
        self.tanh = nn.Tanh()

    def execute(self, input):
        x = self.fc(input).reshape((-1, 256, 7, 7))
        x = self.relu(self.fc_bn(x))
        x = self.relu(self.deconv1_bn(self.deconv1(x)))
        x = self.relu(self.deconv2_bn(self.deconv2(x)))
        x = self.relu(self.deconv3_bn(self.deconv3(x)))
        x = self.relu(self.deconv4_bn(self.deconv4(x)))
        x = self.relu(self.deconv5_bn(self.deconv5(x)))
        x = self.relu(self.deconv6_bn(self.deconv6(x)))
        x = self.tanh(self.deconv7(x))
        return x
 
# 判别器
class discriminator(nn.Module):
    def __init__(self, dim=3):
        super(discriminator, self).__init__()
        self.conv1 = nn.Conv(dim, 64, 5, 2, 2)
        self.conv2 = nn.Conv(64, 128, 5, 2, 2)
        self.conv2_bn = nn.BatchNorm(128)
        self.conv3 = nn.Conv(128, 256, 5, 2, 2)
        self.conv3_bn = nn.BatchNorm(256)
        self.conv4 = nn.Conv(256, 512, 5, 2, 2)
        self.conv4_bn = nn.BatchNorm(512)
        self.fc = nn.Linear(512*7*7, 1)
        self.leaky_relu = nn.Leaky_relu()

    def execute(self, input):
        x = self.leaky_relu(self.conv1(input), 0.2)
        x = self.leaky_relu(self.conv2_bn(self.conv2(x)), 0.2)
        x = self.leaky_relu(self.conv3_bn(self.conv3(x)), 0.2)
        x = self.leaky_relu(self.conv4_bn(self.conv4(x)), 0.2)
        x = x.reshape((x.shape[0], 512*7*7))
        x = self.fc(x)
        return x

# 损失函数
def ls_loss(x, b):
    mini_batch = x.shape[0]
    y_real_ = jt.ones((mini_batch,))
    y_fake_ = jt.zeros((mini_batch,))
    if b:
        return (x-y_real_).sqr().mean()
    else:
        return (x-y_fake_).sqr().mean()

# 定义图像拼接函数
def image_compose(array,IMAGE_SIZE=128,IMAGE_SAVE_PATH='./images_celebA'):
    to_image = Image.new('RGB', (opt.img_column * IMAGE_SIZE, opt.img_row * IMAGE_SIZE))  # 创建一个新图
    randomList = np.random.randint(0,array.shape[0],25)
    img_list = list()
    for i in randomList:
        # print(type(array[i]))
        img = Image.fromarray(np.uint8(array[i].transpose((1,2,0))*255))
        img_list.append(img)

    # 循环遍历,把每张图片按顺序粘贴到对应位置上
    for y in range(1, opt.img_row + 1):
        for x in range(1, opt.img_column + 1):
            from_image = img_list.pop().resize((IMAGE_SIZE, IMAGE_SIZE), Image.ANTIALIAS)
            to_image.paste(from_image, ((x - 1) * IMAGE_SIZE, (y - 1) * IMAGE_SIZE))
    return to_image.save(IMAGE_SAVE_PATH)  # 保存新图

def save_img_result(num_epoch, G, path = './images_celebA/result.png'):
    fixed_z_ = jt.init.gauss((5 * 5, 1024), 'float')    # fixed noise
    z_ = fixed_z_
    G.eval()
    test_images = G(z_)
    G.train()
    size_figure_grid = 5
    fig, ax = plt.subplots(size_figure_grid, size_figure_grid, figsize=(5, 5))
    for i in range(size_figure_grid):
        for j in range(size_figure_grid):
            ax[i, j].get_xaxis().set_visible(False)
            ax[i, j].get_yaxis().set_visible(False)

    for k in range(5*5):
        i = k // 5
        j = k % 5
        ax[i, j].cla()
        if opt.task=="MNIST":
            ax[i, j].imshow((test_images[k, 0].data+1)/2, cmap='gray')
        else:
            ax[i, j].imshow((test_images[k].data.transpose(1, 2, 0)+1)/2)

    label = 'Epoch {0}'.format(num_epoch)
    fig.text(0.5, 0.04, label, ha='center')
    plt.savefig(path)
    plt.close()

def train(epoch):
    for batch_idx, (x_, target) in enumerate(train_loader):        
        mini_batch = x_.shape[0]

        # 判别器训练    将假图片尽可能的判别为0
        D_result = D(x_)                                #输入[128,3,112,112,] 生成[128,1] 128位batch_size
        D_real_loss = ls_loss(D_result, True)           #真实图片的损失
        z_ = jt.init.gauss((mini_batch, 1024), 'float')    #生成随机噪声,大小为[128,1024]
        G_result = G(z_)                                #输入噪声,生成[128,3,112,112,]
        D_result_ = D(G_result)                         #输入由噪声生成的图像,得到判别器的预测值
        D_fake_loss = ls_loss(D_result_, False)         #假图片的损失
        D_train_loss = D_real_loss + D_fake_loss
        D_train_loss.sync()
        D_optim.step(D_train_loss)

        # 生成器训练    让生成器尽可能的生成真实的照片
        z_ = jt.init.gauss((mini_batch, 1024), 'float')    #生成噪声
        G_result = G(z_)                                #由噪声生成假图片
        D_result = D(G_result)                          #将假图片输入到判别器,得到预测值
        G_train_loss = ls_loss(D_result, True)          #将假图片的预测值与1做损失,目的是未来让生成器尽可能的生成真实的照片
        G_train_loss.sync()
        G_optim.step(G_train_loss)
        if (batch_idx%100==0 ):
            print("train: epoch{}  batch_idx{}  D training loss = {}  G training loss = {} ".format(epoch,batch_idx,D_train_loss.data.mean(),G_train_loss.data.mean()))
            # if((epoch)%5==0 or epoch==0 and batch_idx==100):
            #     image_compose(G_result.data,128,"./imgs/epoch{}-G_{}.jpg".format(epoch,task))

def validate(epoch):
    D_losses = []
    G_losses = []
    G.eval()
    D.eval()
    for batch_idx, (x_, target) in enumerate(eval_loader):
        mini_batch = x_.shape[0]

        # 判别器损失计算
        D_result = D(x_)
        D_real_loss = ls_loss(D_result, True)
        z_ = jt.init.gauss((mini_batch, 1024), 'float')
        G_result = G(z_)
        D_result_ = D(G_result)
        D_fake_loss = ls_loss(D_result_, False)
        D_train_loss = D_real_loss + D_fake_loss
        D_losses.append(D_train_loss.data.mean())

        # 生成器损失计算
        z_ = jt.init.gauss((mini_batch, 1024), 'float')
        G_result = G(z_)
        D_result = D(G_result)
        G_train_loss = ls_loss(D_result, True)
        G_losses.append(G_train_loss.data.mean())
    G.train()
    D.train()
    print("validate: epoch{}\tbatch_idx{}\tD training loss = {}\tG training loss = {}"
    .format(epoch, batch_idx, str(np.array(D_losses).mean()), str(np.array(G_losses).mean())))


# 初始化生成器和判别器 (通道数)
G = generator(opt.celebA_channels)
D = discriminator(opt.celebA_channels)

# 优化器 0.0002 (0.5, 0.999)
G_optim = jt.nn.Adam(G.parameters(), opt.lr, betas=(opt.b1, opt.b2))
D_optim = jt.nn.Adam(D.parameters(), opt.lr, betas=(opt.b1, opt.b2))

# 结果存储地址
save_img_path = './images_celebA'
save_model_path = './save_model_celebA'
os.makedirs(save_img_path, exist_ok=True)
os.makedirs(save_model_path, exist_ok=True)

G.load_parameters(jt.load(save_model_path+'/generator_celebA.pkl'))
D.load_parameters(jt.load(save_model_path+'/discriminator_celebA.pkl'))

for epoch in range(37,opt.n_epochs):
    print ('number of epochs', epoch)
    train(epoch)
    #validate(epoch)
    result_img_path = save_img_path + '/' + str(epoch) + '.png'
    save_img_result(epoch, G, path=result_img_path)

    # 指定地址保存训练好的模型
    if (epoch+1) % 10 == 0:
        G.save(save_model_path+"/generator_celebA.pkl")
        D.save(save_model_path+"/discriminator_celebA.pkl")