Transformers
Safetensors
English
code
sriniidhi commited on
Commit
5a496e0
·
verified ·
1 Parent(s): 5d531b6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +110 -81
README.md CHANGED
@@ -1,6 +1,14 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
@@ -13,65 +21,84 @@ tags: []
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
 
47
 
48
  <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
  <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
 
 
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
 
 
63
 
64
  ### Recommendations
65
 
66
  <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
 
 
 
 
69
 
70
  ## How to Get Started with the Model
71
 
72
  Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
@@ -79,30 +106,49 @@ Use the code below to get started with the model.
79
 
80
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
  <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
87
 
88
  #### Preprocessing [optional]
89
 
90
- [More Information Needed]
 
 
 
 
91
 
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
 
 
 
96
 
97
- #### Speeds, Sizes, Times [optional]
 
 
 
 
 
 
 
 
98
 
99
  <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
100
 
101
- [More Information Needed]
102
 
103
- ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
  ### Testing Data, Factors & Metrics
108
 
@@ -110,33 +156,27 @@ Use the code below to get started with the model.
110
 
111
  <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
 
121
  #### Metrics
122
 
123
  <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
-
131
- #### Summary
132
 
 
133
 
 
134
 
135
- ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
@@ -144,56 +184,45 @@ Use the code below to get started with the model.
144
 
145
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
164
-
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
 
170
 
171
- ## Citation [optional]
172
 
173
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - code
5
+ license: mit
6
+ base_model:
7
+ - distilbert/distilgpt2
8
+ datasets:
9
+ - teven/code_contests
10
+ language:
11
+ - en
12
  ---
13
 
14
  # Model Card for Model ID
 
21
 
22
  ### Model Description
23
 
24
+ This model is a LoRA fine-tuned version of distilgpt2, optimized for generating programming solutions in a style similar to competitive programming platforms such as LeetCode and Codeforces. It was trained on a custom dataset of ~5000 coding questions and answers and designed to be deployed with low-resource hardware (4GB VRAM GPU RTX 3050). The model is part of a larger project that incorporates Retrieval-Augmented Generation (RAG) to personalize outputs according to a user's historical coding patterns.
25
 
26
+ - **Developed by:** https://github.com/Srinidhi-Yoganand
27
+ - **Funded by :** Self-funded
28
+ - **Shared by :** sriniidhi
29
+ - **Model type:** Causal Language Model (Decoder-only)
30
+ - **Language(s) (NLP):** English (programming-focused)
31
+ - **License:** MIT
32
+ - **Finetuned from model :** distilgpt2
33
 
34
+ ### Model Sources
 
 
 
 
 
 
 
 
35
 
36
  <!-- Provide the basic links for the model. -->
37
 
38
+ - **Repository:** [Link]
39
+ - **Demo:** [Link]
 
40
 
41
  ## Uses
42
 
 
 
43
  ### Direct Use
44
 
45
+ This model can be used for:
46
+
47
+ - Auto-completing coding problems with competitive programming-style answers
48
 
49
+ - Assisting in learning algorithms by showing step-by-step code solutions
50
 
51
+ - Experimenting with personalized coding assistants
52
+
53
+ ### Downstream Use
54
 
55
  <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
 
57
+ It can be plugged into systems using RAG to personalize answers by analyzing a user’s prior code submissions, or integrated into IDE plugins or chat-based tutoring systems.
58
 
59
  ### Out-of-Scope Use
60
 
61
  <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
 
63
+ - Generating natural language responses outside of programming tasks
64
+
65
+ - Mission-critical code generation (e.g., medical, legal, or financial systems)
66
 
67
  ## Bias, Risks, and Limitations
68
 
69
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
70
 
71
+ - May hallucinate code or logic for uncommon problems.
72
+
73
+ - Not robust to complex multi-language code interactions or frameworks.
74
 
75
  ### Recommendations
76
 
77
  <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
78
 
79
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
80
+
81
+ - Use in combination with RAG for best personalization results.
82
+
83
+ - Validate generated code before execution.
84
+
85
+ - Avoid relying solely on this model for production-critical code generation.
86
 
87
  ## How to Get Started with the Model
88
 
89
  Use the code below to get started with the model.
90
 
91
+ ```
92
+ from transformers import AutoTokenizer, AutoModelForCausalLM
93
+
94
+ model = AutoModelForCausalLM.from_pretrained("sriniidhi/gpt2-coding")
95
+ tokenizer = AutoTokenizer.from_pretrained("sriniidhi/gpt2-coding")
96
+
97
+ prompt = "def two_sum(nums, target):"
98
+ inputs = tokenizer(prompt, return_tensors="pt")
99
+ outputs = model.generate(**inputs, max_new_tokens=100)
100
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
101
+ ```
102
 
103
  ## Training Details
104
 
 
106
 
107
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
108
 
109
+ The dataset consists of 5000+ competitive programming Q&A-style examples extracted and formatted from LeetCode, Codeforces, and similar platforms. Each entry includes a problem prompt and a sample Python, Java, Cpp solution.
110
 
111
  ### Training Procedure
112
 
113
  <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
114
+ LoRA fine-tuning using peft and transformers on top of distilgpt2.
115
 
116
  #### Preprocessing [optional]
117
 
118
+ - Tokenized using GPT2TokenizerFast
119
+
120
+ - Prompt-style formatting with problem + solution pairs
121
+
122
+ - All code lowercased for consistency
123
 
124
 
125
  #### Training Hyperparameters
126
 
127
+ - **Training regime:**
128
+ - Epochs: 3
129
+
130
+ - Batch size: 2
131
+
132
+ - Learning rate: 5e-5
133
 
134
+ - LoRA rank: 8
135
+
136
+ - Precision: fp16
137
+
138
+ - Max length: 512
139
+
140
+ - Optimizer: AdamW
141
+
142
+ #### Speeds, Sizes, Times
143
 
144
  <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
145
+ - Fine-tuned on Google Colab and locally on RTX 3050 4GB
146
 
147
+ - Training duration: ~30 hours
148
 
149
+ - LoRA-adapted weights: ~75MB
150
 
151
+ ## Evaluation
152
 
153
  ### Testing Data, Factors & Metrics
154
 
 
156
 
157
  <!-- This should link to a Dataset Card if possible. -->
158
 
159
+ Evaluation done on 10000 held-out samples not used during training.
 
 
 
 
 
 
160
 
161
  #### Metrics
162
 
163
  <!-- These are the evaluation metrics being used, ideally with a description of why. -->
164
 
165
+ Manual evaluation of logical correctness and style similarity
166
 
167
  ### Results
168
 
169
+ - Approx. 80% logical match on simple algorithm questions
 
 
170
 
171
+ - Maintains coding style reasonably for most basic prompts
172
 
173
+ - Some struggles with complex nested logic
174
 
175
+ ## Model Examination
176
 
177
+ - Focused on learning indentation, loop constructs, and simple algorithm templates
178
 
179
+ - No external code memory or global context unless paired with RAG
180
 
181
  ## Environmental Impact
182
 
 
184
 
185
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
186
 
187
+ - **Hardware Type:** NVIDIA RTX 3050 (4GB VRAM)
188
+ - **Hours used:** ~30 hrs
189
+ - **Cloud Provider:** Google Colab (partial)
190
+ - **Compute Region:** India
191
+ - **Carbon Emitted:** ~2.15 kg CO₂ eq (estimated)
192
 
193
+ ## Technical Specifications
194
 
195
  ### Model Architecture and Objective
196
 
197
+ Decoder-only Transformer (distilgpt2, 6-layer GPT-2)
198
 
199
  ### Compute Infrastructure
200
 
201
+ - Colab + Local
202
 
203
+ - PyTorch, transformers, peft, bitsandbytes
 
 
204
 
205
+ #### Hardware
206
 
207
+ - Ryzen 7
208
+ - RTX 3050
209
 
210
+ ## Citation
211
 
212
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
213
 
214
  **BibTeX:**
215
+ ```
216
+ @misc{gpt2-coding,
217
+ author = {Srinidhi},
218
+ title = {LoRA Fine-tuned distilgpt2 for Code Generation},
219
+ year = {2025},
220
+ url = {https://huggingface.co/sriniidhi/gpt2-coding}
221
+ }
222
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
223
 
224
  ## Model Card Contact
225
 
226
+ GitHub: https://github.com/Srinidhi-Yoganand
227
+
228
+ Hugging Face: https://huggingface.co/sriniidhi