File size: 51,883 Bytes
c080c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8e85c2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- splade
- generated_from_trainer
- dataset_size:99000
- loss:SpladeLoss
widget:
- source_sentence: who are the dancers in the limp bizkit rollin video
  sentences:
  - Voting age Before the Second World War, the voting age in almost all countries
    was 21 years or higher. Czechoslovakia was the first to reduce the voting age
    to 20 years in 1946, and by 1968 a total of 17 countries had lowered their voting
    age.[1] Many countries, particularly in Western Europe, reduced their voting ages
    to 18 years during the 1970s, starting with the United Kingdom (1969),[2] with
    the United States (26th Amendment) (1971), Canada, West Germany (1972), Australia
    (1974), France (1974), and others following soon afterwards. By the end of the
    20th century, 18 had become by far the most common voting age. However, a few
    countries maintain a voting age of 20 years or higher. It was argued that young
    men could be drafted to go to war at 18, and many people felt they should be able
    to vote at the age of 18.[3]
  - Rollin' (Limp Bizkit song) The music video was filmed atop the South Tower of
    the former World Trade Center in New York City. The introduction features Ben
    Stiller and Stephen Dorff mistaking Fred Durst for the valet and giving him the
    keys to their Bentley Azure. Also making a cameo is break dancer Mr. Wiggles.
    The rest of the video has several cuts to Durst and his bandmates hanging out
    of the Bentley as they drive about Manhattan. The song Ben Stiller is playing
    at the beginning is "My Generation" from the same album. The video also features
    scenes of Fred Durst with five girls dancing in a room. The video was filmed around
    the same time as the film Zoolander, which explains Stiller and Dorff's appearance.
    Fred Durst has a small cameo in that film.
  - Eobard Thawne When Thawne reappears, he murders the revived Johnny Quick,[9] before
    proceeding to trap Barry and the revived Max Mercury inside the negative Speed
    Force. Thawne then attempts to kill Wally West's children through their connection
    to the Speed Force in front of Linda Park-West, only to be stopped by Jay Garrick
    and Bart Allen. Thawne defeats Jay and prepares to kill Bart, but Barry, Max,
    Wally, Jesse Quick, and Impulse arrive to prevent the villain from doing so.[8][10]
    In the ensuing fight, Thawne reveals that he is responsible for every tragedy
    that has occurred in Barry's life, including the death of his mother. Thawne then
    decides to destroy everything the Flash holds dear by killing Barry's wife, Iris,
    before they even met.[10]
- source_sentence: who wins season 14 of hell's kitchen
  sentences:
  - Hell's Kitchen (U.S. season 14) Season 14 of the American competitive reality
    television series Hell's Kitchen premiered on March 3, 2015 on Fox. The prize
    is a head chef position at Gordon Ramsay Pub & Grill in Caesars Atlantic City.[1]
    Gordon Ramsay returned as head chef with Andi Van Willigan and James Avery returning
    as sous-chefs for both their respective kitchens as well as Marino Monferrato
    as the maître d'. Executive chef Meghan Gill from Roanoke, Virginia, won the
    competition, thus becoming the fourteenth winner of Hell's Kitchen.
  - 'Maze Runner: The Death Cure On April 22, 2017, the studio delayed the release
    date once again, to February 9, 2018, in order to allow more time for post-production;
    months later, on August 25, the studio moved the release forward two weeks.[17]
    The film will premiere on January 26, 2018 in 3D, IMAX and IMAX 3D.[18][19]'
  - North American Plate On its western edge, the Farallon Plate has been subducting
    under the North American Plate since the Jurassic Period. The Farallon Plate has
    almost completely subducted beneath the western portion of the North American
    Plate leaving that part of the North American Plate in contact with the Pacific
    Plate as the San Andreas Fault. The Juan de Fuca, Explorer, Gorda, Rivera, Cocos
    and Nazca plates are remnants of the Farallon Plate.
- source_sentence: who played the dj in the movie the warriors
  sentences:
  - List of Arrow episodes As of May 17, 2018,[update] 138 episodes of Arrow have
    aired, concluding the sixth season. On April 2, 2018, the CW renewed the series
    for a seventh season.[1]
  - Lynne Thigpen Cherlynne Theresa "Lynne" Thigpen (December 22, 1948 – March 12,
    2003) was an American actress, best known for her role as "The Chief" of ACME
    in the various Carmen Sandiego television series and computer games from 1991
    to 1997. For her varied television work, Thigpen was nominated for six Daytime
    Emmy Awards; she won a Tony Award in 1997 for portraying Dr. Judith Kaufman in
    An American Daughter.
  - The Washington Post The Washington Post is an American daily newspaper. It is
    the most widely circulated newspaper published in Washington, D.C., and was founded
    on December 6, 1877,[7] making it the area's oldest extant newspaper. In February
    2017, amid a barrage of criticism from President Donald Trump over the paper's
    coverage of his campaign and early presidency as well as concerns among the American
    press about Trump's criticism and threats against journalists who provide coverage
    he deems unfavorable, the Post adopted the slogan "Democracy Dies in Darkness".[8]
- source_sentence: how old was messi when he started his career
  sentences:
  - Lionel Messi Born and raised in central Argentina, Messi was diagnosed with a
    growth hormone deficiency as a child. At age 13, he relocated to Spain to join
    Barcelona, who agreed to pay for his medical treatment. After a fast progression
    through Barcelona's youth academy, Messi made his competitive debut aged 17 in
    October 2004. Despite being injury-prone during his early career, he established
    himself as an integral player for the club within the next three years, finishing
    2007 as a finalist for both the Ballon d'Or and FIFA World Player of the Year
    award, a feat he repeated the following year. His first uninterrupted campaign
    came in the 2008–09 season, during which he helped Barcelona achieve the first
    treble in Spanish football. At 22 years old, Messi won the Ballon d'Or and FIFA
    World Player of the Year award by record voting margins.
  - We Are Marshall Filming of We Are Marshall commenced on April 3, 2006, in Huntington,
    West Virginia, and was completed in Atlanta, Georgia. The premiere for the film
    was held at the Keith Albee Theater on December 12, 2006, in Huntington; other
    special screenings were held at Pullman Square. The movie was released nationwide
    on December 22, 2006.
  - One Fish, Two Fish, Red Fish, Blue Fish One Fish, Two Fish, Red Fish, Blue Fish
    is a 1960 children's book by Dr. Seuss. It is a simple rhyming book for beginning
    readers, with a freewheeling plot about a boy and a girl named Jay and Kay and
    the many amazing creatures they have for friends and pets. Interspersed are some
    rather surreal and unrelated skits, such as a man named Ned whose feet stick out
    from his bed, and a creature who has a bird in his ear. As of 2001, over 6 million
    copies of the book had been sold, placing it 13th on a list of "All-Time Bestselling
    Children's Books" from Publishers Weekly.[1] Based on a 2007 online poll, the
    United States' National Education Association labor union named the book one of
    its "Teachers' Top 100 Books for Children."[2]
- source_sentence: is send in the clowns from a musical
  sentences:
  - Money in the Bank ladder match The first match was contested in 2005 at WrestleMania
    21, after being invented (in kayfabe) by Chris Jericho.[1] At the time, it was
    exclusive to wrestlers of the Raw brand, and Edge won the inaugural match.[1]
    From then until 2010, the Money in the Bank ladder match, now open to all WWE
    brands, became a WrestleMania mainstay. 2010 saw a second and third Money in the
    Bank ladder match when the Money in the Bank pay-per-view debuted in July. Unlike
    the matches at WrestleMania, this new event featured two such ladder matches –
    one each for a contract for the WWE Championship and World Heavyweight Championship,
    respectively.
  - The Suite Life on Deck The Suite Life on Deck is an American sitcom that aired
    on Disney Channel from September 26, 2008 to May 6, 2011. It is a sequel/spin-off
    of the Disney Channel Original Series The Suite Life of Zack & Cody. The series
    follows twin brothers Zack and Cody Martin and hotel heiress London Tipton in
    a new setting, the SS Tipton, where they attend classes at "Seven Seas High School"
    and meet Bailey Pickett while Mr. Moseby manages the ship. The ship travels around
    the world to nations such as Italy, France, Greece, India, Sweden and the United
    Kingdom where the characters experience different cultures, adventures, and situations.[1]
  - 'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim
    for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman''s
    film Smiles of a Summer Night. It is a ballad from Act Two, in which the character
    Desirée reflects on the ironies and disappointments of her life. Among other things,
    she looks back on an affair years earlier with the lawyer Fredrik, who was deeply
    in love with her but whose marriage proposals she had rejected. Meeting him after
    so long, she realizes she is in love with him and finally ready to marry him,
    but now it is he who rejects her: he is in an unconsummated marriage with a much
    younger woman. Desirée proposes marriage to rescue him from this situation, but
    he declines, citing his dedication to his bride. Reacting to his rejection, Desirée
    sings this song. The song is later reprised as a coda after Fredrik''s young wife
    runs away with his son, and Fredrik is finally free to accept Desirée''s offer.[1]'
datasets:
- sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
co2_eq_emissions:
  emissions: 10.656630177765601
  energy_consumed: 0.027415938631047954
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.082
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SPLADE BERT-tiny trained on Natural-Questions tuples
  results:
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoMSMARCO
      type: NanoMSMARCO
    metrics:
    - type: dot_accuracy@1
      value: 0.22
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.36
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.4
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.54
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.22
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.11999999999999998
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.08000000000000002
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.054000000000000006
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.22
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.36
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.4
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.54
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.3571008976876618
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.30113492063492064
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.31600753362153616
      name: Dot Map@100
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNFCorpus
      type: NanoNFCorpus
    metrics:
    - type: dot_accuracy@1
      value: 0.24
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.38
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.48
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.58
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.24
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.21333333333333332
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.184
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.16
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.01910619386686893
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.03647891009411463
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.043286562520389434
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.0624423217616165
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.1824659316003306
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.3309444444444445
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.0640015611933746
      name: Dot Map@100
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNQ
      type: NanoNQ
    metrics:
    - type: dot_accuracy@1
      value: 0.1
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.24
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.34
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.44
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.1
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.08
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.068
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.046000000000000006
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.09
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.22
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.32
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.41
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.24844109892252747
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.20507142857142857
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.208667797146501
      name: Dot Map@100
  - task:
      type: sparse-nano-beir
      name: Sparse Nano BEIR
    dataset:
      name: NanoBEIR mean
      type: NanoBEIR_mean
    metrics:
    - type: dot_accuracy@1
      value: 0.18666666666666665
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.32666666666666666
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.4066666666666667
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.52
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.18666666666666665
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.13777777777777778
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.11066666666666668
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08666666666666667
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.10970206462228964
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.20549297003137154
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.25442885417346317
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.3374807739205388
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.26266930940350663
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.27905026455026455
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.1962256306538039
      name: Dot Map@100
---

# SPLADE BERT-tiny trained on Natural-Questions tuples

This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model trained on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.

This model was trained using [train_script.py](train_script.py).

## Model Details

### Model Description
- **Model Type:** SPLADE Sparse Encoder
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 30522 dimensions
- **Similarity Function:** Dot Product
- **Training Dataset:**
    - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)

### Full Model Architecture

```
SparseEncoder(
  (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 
  (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("sparse-encoder-testing/splade-bert-tiny-nq")
# Run inference
sentences = [
    'is send in the clowns from a musical',
    'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman\'s film Smiles of a Summer Night. It is a ballad from Act Two, in which the character Desirée reflects on the ironies and disappointments of her life. Among other things, she looks back on an affair years earlier with the lawyer Fredrik, who was deeply in love with her but whose marriage proposals she had rejected. Meeting him after so long, she realizes she is in love with him and finally ready to marry him, but now it is he who rejects her: he is in an unconsummated marriage with a much younger woman. Desirée proposes marriage to rescue him from this situation, but he declines, citing his dedication to his bride. Reacting to his rejection, Desirée sings this song. The song is later reprised as a coda after Fredrik\'s young wife runs away with his son, and Fredrik is finally free to accept Desirée\'s offer.[1]',
    'The Suite Life on Deck The Suite Life on Deck is an American sitcom that aired on Disney Channel from September 26, 2008 to May 6, 2011. It is a sequel/spin-off of the Disney Channel Original Series The Suite Life of Zack & Cody. The series follows twin brothers Zack and Cody Martin and hotel heiress London Tipton in a new setting, the SS Tipton, where they attend classes at "Seven Seas High School" and meet Bailey Pickett while Mr. Moseby manages the ship. The ship travels around the world to nations such as Italy, France, Greece, India, Sweden and the United Kingdom where the characters experience different cultures, adventures, and situations.[1]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 30522)

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Sparse Information Retrieval

* Datasets: `NanoMSMARCO`, `NanoNFCorpus` and `NanoNQ`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)

| Metric           | NanoMSMARCO | NanoNFCorpus | NanoNQ     |
|:-----------------|:------------|:-------------|:-----------|
| dot_accuracy@1   | 0.22        | 0.24         | 0.1        |
| dot_accuracy@3   | 0.36        | 0.38         | 0.24       |
| dot_accuracy@5   | 0.4         | 0.48         | 0.34       |
| dot_accuracy@10  | 0.54        | 0.58         | 0.44       |
| dot_precision@1  | 0.22        | 0.24         | 0.1        |
| dot_precision@3  | 0.12        | 0.2133       | 0.08       |
| dot_precision@5  | 0.08        | 0.184        | 0.068      |
| dot_precision@10 | 0.054       | 0.16         | 0.046      |
| dot_recall@1     | 0.22        | 0.0191       | 0.09       |
| dot_recall@3     | 0.36        | 0.0365       | 0.22       |
| dot_recall@5     | 0.4         | 0.0433       | 0.32       |
| dot_recall@10    | 0.54        | 0.0624       | 0.41       |
| **dot_ndcg@10**  | **0.3571**  | **0.1825**   | **0.2484** |
| dot_mrr@10       | 0.3011      | 0.3309       | 0.2051     |
| dot_map@100      | 0.316       | 0.064        | 0.2087     |

#### Sparse Nano BEIR

* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
  ```json
  {
      "dataset_names": [
          "msmarco",
          "nfcorpus",
          "nq"
      ]
  }
  ```

| Metric           | Value      |
|:-----------------|:-----------|
| dot_accuracy@1   | 0.1867     |
| dot_accuracy@3   | 0.3267     |
| dot_accuracy@5   | 0.4067     |
| dot_accuracy@10  | 0.52       |
| dot_precision@1  | 0.1867     |
| dot_precision@3  | 0.1378     |
| dot_precision@5  | 0.1107     |
| dot_precision@10 | 0.0867     |
| dot_recall@1     | 0.1097     |
| dot_recall@3     | 0.2055     |
| dot_recall@5     | 0.2544     |
| dot_recall@10    | 0.3375     |
| **dot_ndcg@10**  | **0.2627** |
| dot_mrr@10       | 0.2791     |
| dot_map@100      | 0.1962     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### natural-questions

* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 99,000 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                                          | answer                                                                                            |
  |:--------|:-----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
  | type    | string                                                                                         | string                                                                                            |
  | details | <ul><li>min: 29 characters</li><li>mean: 46.96 characters</li><li>max: 93 characters</li></ul> | <ul><li>min: 10 characters</li><li>mean: 582.13 characters</li><li>max: 2141 characters</li></ul> |
* Samples:
  | query                                                         | answer                                                                                                                                                                                                                                                                                                                                                                                                                                  |
  |:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>who played the father in papa don't preach</code>       | <code>Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.</code>                                                                                                                                                                                                                                                                                                                                                     |
  | <code>where was the location of the battle of hastings</code> | <code>Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.</code> |
  | <code>how many puppies can a dog give birth to</code>         | <code>Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]</code>                                                                                                                                                                                                                                                      |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
  ```json
  {'loss': SparseMultipleNegativesRankingLoss(
    (model): SparseEncoder(
      (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 
      (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
    )
    (cross_entropy_loss): CrossEntropyLoss()
  ), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05, 'corpus_regularizer': FlopsLoss(
    (model): SparseEncoder(
      (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 
      (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
    )
  ), 'query_regularizer': FlopsLoss(
    (model): SparseEncoder(
      (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 
      (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
    )
  )}
  ```

### Evaluation Dataset

#### natural-questions

* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 1,000 evaluation samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                                         | answer                                                                                            |
  |:--------|:----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
  | type    | string                                                                                        | string                                                                                            |
  | details | <ul><li>min: 30 characters</li><li>mean: 47.2 characters</li><li>max: 96 characters</li></ul> | <ul><li>min: 58 characters</li><li>mean: 598.96 characters</li><li>max: 2480 characters</li></ul> |
* Samples:
  | query                                                  | answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
  |:-------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>where is the tiber river located in italy</code> | <code>Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.</code> |
  | <code>what kind of car does jay gatsby drive</code>    | <code>Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.</code>                                       |
  | <code>who sings if i can dream about you</code>        | <code>I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]</code>                                                                                                                                                                                                                   |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
  ```json
  {'loss': SparseMultipleNegativesRankingLoss(
    (model): SparseEncoder(
      (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 
      (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
    )
    (cross_entropy_loss): CrossEntropyLoss()
  ), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05, 'corpus_regularizer': FlopsLoss(
    (model): SparseEncoder(
      (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 
      (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
    )
  ), 'query_regularizer': FlopsLoss(
    (model): SparseEncoder(
      (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 
      (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
    )
  )}
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 |
|:------:|:----:|:-------------:|:---------------:|:-----------------------:|:------------------------:|:------------------:|:-------------------------:|
| 0.0129 | 20   | 1688.0217     | -               | -                       | -                        | -                  | -                         |
| 0.0259 | 40   | 1557.9103     | -               | -                       | -                        | -                  | -                         |
| 0.0388 | 60   | 1205.4178     | -               | -                       | -                        | -                  | -                         |
| 0.0517 | 80   | 692.3048      | -               | -                       | -                        | -                  | -                         |
| 0.0646 | 100  | 297.4244      | -               | -                       | -                        | -                  | -                         |
| 0.0776 | 120  | 144.2392      | -               | -                       | -                        | -                  | -                         |
| 0.0905 | 140  | 75.7438       | -               | -                       | -                        | -                  | -                         |
| 0.1034 | 160  | 35.3506       | -               | -                       | -                        | -                  | -                         |
| 0.1164 | 180  | 20.7095       | -               | -                       | -                        | -                  | -                         |
| 0.1293 | 200  | 12.5446       | 6.9048          | 0.1524                  | 0.0784                   | 0.0574             | 0.0961                    |
| 0.1422 | 220  | 8.1351        | -               | -                       | -                        | -                  | -                         |
| 0.1551 | 240  | 6.1495        | -               | -                       | -                        | -                  | -                         |
| 0.1681 | 260  | 4.4986        | -               | -                       | -                        | -                  | -                         |
| 0.1810 | 280  | 3.5353        | -               | -                       | -                        | -                  | -                         |
| 0.1939 | 300  | 3.0714        | -               | -                       | -                        | -                  | -                         |
| 0.2069 | 320  | 2.4237        | -               | -                       | -                        | -                  | -                         |
| 0.2198 | 340  | 1.9325        | -               | -                       | -                        | -                  | -                         |
| 0.2327 | 360  | 1.8585        | -               | -                       | -                        | -                  | -                         |
| 0.2456 | 380  | 1.491         | -               | -                       | -                        | -                  | -                         |
| 0.2586 | 400  | 1.4503        | 0.8541          | 0.2248                  | 0.1322                   | 0.1045             | 0.1538                    |
| 0.2715 | 420  | 1.3789        | -               | -                       | -                        | -                  | -                         |
| 0.2844 | 440  | 1.3195        | -               | -                       | -                        | -                  | -                         |
| 0.2973 | 460  | 1.198         | -               | -                       | -                        | -                  | -                         |
| 0.3103 | 480  | 1.1532        | -               | -                       | -                        | -                  | -                         |
| 0.3232 | 500  | 1.1931        | -               | -                       | -                        | -                  | -                         |
| 0.3361 | 520  | 1.1989        | -               | -                       | -                        | -                  | -                         |
| 0.3491 | 540  | 1.008         | -               | -                       | -                        | -                  | -                         |
| 0.3620 | 560  | 0.9798        | -               | -                       | -                        | -                  | -                         |
| 0.3749 | 580  | 0.9551        | -               | -                       | -                        | -                  | -                         |
| 0.3878 | 600  | 0.9687        | 0.4356          | 0.2709                  | 0.1438                   | 0.1519             | 0.1888                    |
| 0.4008 | 620  | 0.8331        | -               | -                       | -                        | -                  | -                         |
| 0.4137 | 640  | 0.6947        | -               | -                       | -                        | -                  | -                         |
| 0.4266 | 660  | 0.7768        | -               | -                       | -                        | -                  | -                         |
| 0.4396 | 680  | 0.7101        | -               | -                       | -                        | -                  | -                         |
| 0.4525 | 700  | 0.6902        | -               | -                       | -                        | -                  | -                         |
| 0.4654 | 720  | 0.6766        | -               | -                       | -                        | -                  | -                         |
| 0.4783 | 740  | 0.6001        | -               | -                       | -                        | -                  | -                         |
| 0.4913 | 760  | 0.6231        | -               | -                       | -                        | -                  | -                         |
| 0.5042 | 780  | 0.5953        | -               | -                       | -                        | -                  | -                         |
| 0.5171 | 800  | 0.6846        | 0.3068          | 0.2958                  | 0.1543                   | 0.2071             | 0.2190                    |
| 0.5301 | 820  | 0.5851        | -               | -                       | -                        | -                  | -                         |
| 0.5430 | 840  | 0.579         | -               | -                       | -                        | -                  | -                         |
| 0.5559 | 860  | 0.5659        | -               | -                       | -                        | -                  | -                         |
| 0.5688 | 880  | 0.553         | -               | -                       | -                        | -                  | -                         |
| 0.5818 | 900  | 0.4812        | -               | -                       | -                        | -                  | -                         |
| 0.5947 | 920  | 0.5389        | -               | -                       | -                        | -                  | -                         |
| 0.6076 | 940  | 0.4658        | -               | -                       | -                        | -                  | -                         |
| 0.6206 | 960  | 0.5309        | -               | -                       | -                        | -                  | -                         |
| 0.6335 | 980  | 0.484         | -               | -                       | -                        | -                  | -                         |
| 0.6464 | 1000 | 0.4655        | 0.2527          | 0.3131                  | 0.1660                   | 0.2294             | 0.2362                    |
| 0.6593 | 1020 | 0.5617        | -               | -                       | -                        | -                  | -                         |
| 0.6723 | 1040 | 0.4786        | -               | -                       | -                        | -                  | -                         |
| 0.6852 | 1060 | 0.5561        | -               | -                       | -                        | -                  | -                         |
| 0.6981 | 1080 | 0.4869        | -               | -                       | -                        | -                  | -                         |
| 0.7111 | 1100 | 0.5134        | -               | -                       | -                        | -                  | -                         |
| 0.7240 | 1120 | 0.4702        | -               | -                       | -                        | -                  | -                         |
| 0.7369 | 1140 | 0.4481        | -               | -                       | -                        | -                  | -                         |
| 0.7498 | 1160 | 0.4758        | -               | -                       | -                        | -                  | -                         |
| 0.7628 | 1180 | 0.4625        | -               | -                       | -                        | -                  | -                         |
| 0.7757 | 1200 | 0.4733        | 0.2330          | 0.3498                  | 0.1748                   | 0.2357             | 0.2534                    |
| 0.7886 | 1220 | 0.4527        | -               | -                       | -                        | -                  | -                         |
| 0.8016 | 1240 | 0.4735        | -               | -                       | -                        | -                  | -                         |
| 0.8145 | 1260 | 0.3818        | -               | -                       | -                        | -                  | -                         |
| 0.8274 | 1280 | 0.4546        | -               | -                       | -                        | -                  | -                         |
| 0.8403 | 1300 | 0.4724        | -               | -                       | -                        | -                  | -                         |
| 0.8533 | 1320 | 0.4194        | -               | -                       | -                        | -                  | -                         |
| 0.8662 | 1340 | 0.4352        | -               | -                       | -                        | -                  | -                         |
| 0.8791 | 1360 | 0.3926        | -               | -                       | -                        | -                  | -                         |
| 0.8920 | 1380 | 0.397         | -               | -                       | -                        | -                  | -                         |
| 0.9050 | 1400 | 0.4157        | 0.2206          | 0.3558                  | 0.1785                   | 0.2495             | 0.2613                    |
| 0.9179 | 1420 | 0.4426        | -               | -                       | -                        | -                  | -                         |
| 0.9308 | 1440 | 0.4077        | -               | -                       | -                        | -                  | -                         |
| 0.9438 | 1460 | 0.4227        | -               | -                       | -                        | -                  | -                         |
| 0.9567 | 1480 | 0.4184        | -               | -                       | -                        | -                  | -                         |
| 0.9696 | 1500 | 0.4838        | -               | -                       | -                        | -                  | -                         |
| 0.9825 | 1520 | 0.4991        | -               | -                       | -                        | -                  | -                         |
| 0.9955 | 1540 | 0.3889        | -               | -                       | -                        | -                  | -                         |
| -1     | -1   | -             | -               | 0.3571                  | 0.1825                   | 0.2484             | 0.2627                    |


### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.027 kWh
- **Carbon Emitted**: 0.011 kg of CO2
- **Hours Used**: 0.082 hours

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB

### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.1
- Datasets: 2.21.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### SpladeLoss
```bibtex
@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->