Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,131 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
)
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
import spaces
|
6 |
+
|
7 |
+
# Flag to use GPU (set to False by default)
|
8 |
+
USE_GPU = False
|
9 |
+
|
10 |
+
# Load the processor and model
|
11 |
+
device = torch.device("cuda" if USE_GPU and torch.cuda.is_available() else "cpu")
|
12 |
+
|
13 |
+
processor = AutoProcessor.from_pretrained(
|
14 |
+
'allenai/Molmo-7B-D-0924',
|
15 |
+
trust_remote_code=True,
|
16 |
+
torch_dtype='auto',
|
17 |
+
)
|
18 |
+
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(
|
20 |
+
'allenai/Molmo-7B-D-0924',
|
21 |
+
trust_remote_code=True,
|
22 |
+
torch_dtype='auto',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
)
|
24 |
|
25 |
+
model.to(device)
|
26 |
+
|
27 |
+
# Predefined prompts
|
28 |
+
prompts = [
|
29 |
+
"Describe this image in detail",
|
30 |
+
"What objects can you see in this image?",
|
31 |
+
"What's the main subject of this image?",
|
32 |
+
"Describe the colors in this image",
|
33 |
+
"What emotions does this image evoke?"
|
34 |
+
]
|
35 |
+
|
36 |
+
def process_image_and_text(image, text, max_new_tokens, temperature, top_p):
|
37 |
+
# Process the image and text
|
38 |
+
inputs = processor.process(
|
39 |
+
images=[Image.fromarray(image)],
|
40 |
+
text=text
|
41 |
+
)
|
42 |
+
|
43 |
+
# Move inputs to the correct device and make a batch of size 1
|
44 |
+
inputs = {k: v.to(device).unsqueeze(0) for k, v in inputs.items()}
|
45 |
+
|
46 |
+
# Generate output
|
47 |
+
output = model.generate_from_batch(
|
48 |
+
inputs,
|
49 |
+
GenerationConfig(
|
50 |
+
max_new_tokens=max_new_tokens,
|
51 |
+
temperature=temperature,
|
52 |
+
top_p=top_p,
|
53 |
+
stop_strings="<|endoftext|>"
|
54 |
+
),
|
55 |
+
tokenizer=processor.tokenizer
|
56 |
+
)
|
57 |
+
|
58 |
+
# Only get generated tokens; decode them to text
|
59 |
+
generated_tokens = output[0, inputs['input_ids'].size(1):]
|
60 |
+
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
61 |
+
|
62 |
+
return generated_text
|
63 |
+
|
64 |
+
def chatbot(image, text, history, max_new_tokens, temperature, top_p):
|
65 |
+
if image is None:
|
66 |
+
return history + [("Please upload an image first.", None)]
|
67 |
+
|
68 |
+
response = process_image_and_text(image, text, max_new_tokens, temperature, top_p)
|
69 |
+
history.append((text, response))
|
70 |
+
return history
|
71 |
+
|
72 |
+
def update_textbox(prompt):
|
73 |
+
return gr.update(value=prompt)
|
74 |
+
|
75 |
+
# Define the Gradio interface
|
76 |
+
with gr.Blocks() as demo:
|
77 |
+
gr.Markdown("# Image Chatbot with Molmo-7B-D-0924")
|
78 |
+
|
79 |
+
with gr.Row():
|
80 |
+
image_input = gr.Image(type="numpy")
|
81 |
+
chatbot_output = gr.Chatbot()
|
82 |
+
|
83 |
+
with gr.Row():
|
84 |
+
text_input = gr.Textbox(placeholder="Ask a question about the image...")
|
85 |
+
prompt_dropdown = gr.Dropdown(choices=[""] + prompts, label="Select a premade prompt", value="")
|
86 |
+
|
87 |
+
submit_button = gr.Button("Submit")
|
88 |
+
clear_button = gr.ClearButton([text_input, chatbot_output])
|
89 |
+
|
90 |
+
with gr.Accordion("Advanced options", open=False):
|
91 |
+
max_new_tokens = gr.Slider(minimum=1, maximum=500, value=200, step=1, label="Max new tokens")
|
92 |
+
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Temperature")
|
93 |
+
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
|
94 |
+
|
95 |
+
state = gr.State([])
|
96 |
+
|
97 |
+
# Add copy button for raw output
|
98 |
+
with gr.Row():
|
99 |
+
raw_output = gr.Textbox(label="Raw Output", interactive=False)
|
100 |
+
copy_button = gr.Button("Copy Raw Output")
|
101 |
+
|
102 |
+
def update_raw_output(history):
|
103 |
+
if history:
|
104 |
+
return history[-1][1]
|
105 |
+
return ""
|
106 |
+
|
107 |
+
submit_button.click(
|
108 |
+
chatbot,
|
109 |
+
inputs=[image_input, text_input, state, max_new_tokens, temperature, top_p],
|
110 |
+
outputs=[chatbot_output]
|
111 |
+
).then(
|
112 |
+
update_raw_output,
|
113 |
+
inputs=[chatbot_output],
|
114 |
+
outputs=[raw_output]
|
115 |
+
)
|
116 |
+
|
117 |
+
text_input.submit(
|
118 |
+
chatbot,
|
119 |
+
inputs=[image_input, text_input, state, max_new_tokens, temperature, top_p],
|
120 |
+
outputs=[chatbot_output]
|
121 |
+
).then(
|
122 |
+
update_raw_output,
|
123 |
+
inputs=[chatbot_output],
|
124 |
+
outputs=[raw_output]
|
125 |
+
)
|
126 |
+
|
127 |
+
prompt_dropdown.change(update_textbox, inputs=[prompt_dropdown], outputs=[text_input])
|
128 |
+
|
129 |
+
copy_button.click(lambda x: gr.update(value=x), inputs=[raw_output], outputs=[gr.Textbox(visible=False)])
|
130 |
|
131 |
+
demo.launch()
|
|