import gradio as gr import requests import json import torch import pandas as pd import inspect import os import gc import torch, transformers print(f"PyTorch: {torch.__version__}") print(f"Transformers: {transformers.__version__}") os.environ['CUDA_LAUNCH_BLOCKING'] = '1' try: from smolagents import CodeAgent, DuckDuckGoSearchTool, TransformersModel SMOLAGENTS_AVAILABLE = True except ImportError: print("Warning: smolagents not available, using fallback implementation") SMOLAGENTS_AVAILABLE = False # (Keep Constants as is) # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" CURRENT_PROMPT = """You are a helpful assistant that can use tools including web-search and writing Python code to answer questions. Question: {question} To answer this question: 1. If you need current information or facts you're unsure about, use the search tool 2. If you need to transcribe audio, import smolagents and instantiate 'transcriber = smolagents.Transcriber()' 3. Write Python code to solve the problem 4. Make sure your final answer is clear and direct Available tools: - web_search(query: str) → str - visit_webpage(url: str) → str - transcriber(audio_file_path: str) → str - python(code: str) → Any - final_answer(answer: str) → None Please provide a complete solution that ends with the correct final answer.""" # --- Basic Agent Definition --- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------ class BasicAgent: """ Basic agent using smolagents CodeAgent with DuckDuckGoSearchTool. """ def __init__(self): print("BasicAgent initialized.") # Check GPU availability print(f"🔍 GPU Check:") print(f" - CUDA available: {torch.cuda.is_available()}") if torch.cuda.is_available(): print(f" - CUDA device count: {torch.cuda.device_count()}") print(f" - Current device: {torch.cuda.current_device()}") print(f" - Device name: {torch.cuda.get_device_name()}") print(f" - Device memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB") else: print(" - No CUDA devices found, will use CPU") if SMOLAGENTS_AVAILABLE: try: # Initialize the model print("🤖 Initializing TransformersModel...") self.model = TransformersModel( model_id="Qwen/Qwen2.5-Coder-14B", torch_dtype=torch.bfloat16, device_map="auto", ) if hasattr(self.model, 'tokenizer') and self.model.tokenizer is not None: # Set left padding for better batching with causal models self.model.tokenizer.padding_side = "left" # Ensure pad token is set if self.model.tokenizer.pad_token is None: self.model.tokenizer.pad_token = self.model.tokenizer.eos_token # Set default padding behavior for FlashAttention self.model.tokenizer.pad_to_multiple_of = 64 print("✅ Applied tokenizer padding fix for FlashAttention alignment") # If the model has a processor with tokenizer, fix that too if hasattr(self.model, 'processor') and hasattr(self.model.processor, 'tokenizer'): self.model.processor.tokenizer.padding_side = "left" if self.model.processor.tokenizer.pad_token is None: self.model.processor.tokenizer.pad_token = self.model.processor.tokenizer.eos_token self.model.processor.tokenizer.pad_to_multiple_of = 64 print("✅ Applied processor tokenizer padding fix") # Verify where model actually loaded if hasattr(self.model, 'device'): print(f"✅ Model loaded on device: {self.model.device}") elif hasattr(self.model, 'model') and hasattr(self.model.model, 'device'): print(f"✅ Model loaded on device: {self.model.model.device}") else: print("✅ Model loaded (device info not directly accessible)") # Create CodeAgent with DuckDuckGoSearchTool and additional imports self.agent = CodeAgent( tools=[], model=self.model, max_steps=24, additional_authorized_imports=[ 'math', 'statistics', 're', # Basic computation 'requests', 'json', # Web requests and JSON 'pandas', 'numpy', 'openpyxl',# Data analysis 'zipfile', 'os', # File processing 'datetime', 'time', # Date/time operations 'smolagents' ], add_base_tools=True, ) self.tools_available = True print("✅ Smolagents CodeAgent initialized with DuckDuckGoSearchTool") except Exception as e: print(f"⚠️ Error initializing smolagents: {e}") import traceback traceback.print_exc() self.tools_available = False else: self.tools_available = False if not self.tools_available: print("⚠️ Using fallback implementation without smolagents") def _run_smolagents(self, question): """Run question through smolagents CodeAgent with enhanced prompting.""" try: # Use the global CURRENT_PROMPT variable formatted_question = CURRENT_PROMPT.format(question=question) print(f"🔄 Processing question: {question}") print(f"🔧 Available tools: {[tool.__class__.__name__ for tool in self.agent.tools]}") # Run the agent with torch.no_grad(): result = self.agent.run(formatted_question) print(f"Raw result: {result}") # Clean up the result (remove any remaining prefixes) if isinstance(result, str): result = result.strip() # Remove common prefixes prefixes_to_remove = ["The answer is ", "Answer: ", "Final answer: "] for prefix in prefixes_to_remove: if result.startswith(prefix): result = result[len(prefix):].strip() return result except Exception as e: import traceback return f"Agent error: {e}\n{traceback.format_exc()}" def _fallback_implementation(self, question): """Fallback when smolagents is not available.""" return f"Smolagents not available. Question received: {question}" def __call__(self, question): """Process a question using the smolagents CodeAgent or fallback.""" if self.tools_available: return self._run_smolagents(question) else: return self._fallback_implementation(question) def cleanup_memory(): """Centralized memory cleanup function""" if torch.cuda.is_available(): torch.cuda.synchronize() import time time.sleep(0.1) torch.cuda.empty_cache() gc.collect() def run_and_submit_all( profile: gr.OAuthProfile | None): """ Fetches all questions, runs the BasicAgent on them, submits all answers, and displays the results. """ # --- Determine HF Space Runtime URL and Repo URL --- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code if profile: username= f"{profile.username}" print(f"User logged in: {username}") else: print("User not logged in.") return "Please Login to Hugging Face with the button.", None api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" # 1. Instantiate Agent ( modify this part to create your agent) try: agent = BasicAgent() except Exception as e: print(f"Error instantiating agent: {e}") return f"Error initializing agent: {e}", None # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" print(agent_code) # 2. Fetch Questions print(f"Fetching questions from: {questions_url}") try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: print("Fetched questions list is empty.") return "Fetched questions list is empty or invalid format.", None print(f"Fetched {len(questions_data)} questions.") except requests.exceptions.RequestException as e: print(f"Error fetching questions: {e}") return f"Error fetching questions: {e}", None except requests.exceptions.JSONDecodeError as e: print(f"Error decoding JSON response from questions endpoint: {e}") print(f"Response text: {response.text[:500]}") return f"Error decoding server response for questions: {e}", None except Exception as e: print(f"An unexpected error occurred fetching questions: {e}") return f"An unexpected error occurred fetching questions: {e}", None # 3. Run your Agent results_log = [] answers_payload = [] print(f"Running agent on {len(questions_data)} questions...") for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: print(f"Skipping item with missing task_id or question: {item}") continue try: submitted_answer = agent(question_text) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) except Exception as e: print(f"Error running agent on task {task_id}: {e}") results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) finally: cleanup_memory() if not answers_payload: print("Agent did not produce any answers to submit.") return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) # 4. Prepare Submission submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." print(status_update) # 5. Submit print(f"Submitting {len(answers_payload)} answers to: {submit_url}") try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) print("Submission successful.") results_df = pd.DataFrame(results_log) return final_status, results_df except requests.exceptions.HTTPError as e: error_detail = f"Server responded with status {e.response.status_code}." try: error_json = e.response.json() error_detail += f" Detail: {error_json.get('detail', e.response.text)}" except requests.exceptions.JSONDecodeError: error_detail += f" Response: {e.response.text[:500]}" status_message = f"Submission Failed: {error_detail}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.Timeout: status_message = "Submission Failed: The request timed out." print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.RequestException as e: status_message = f"Submission Failed: Network error - {e}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except Exception as e: status_message = f"An unexpected error occurred during submission: {e}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df # --- Build Gradio Interface using Blocks --- with gr.Blocks() as demo: gr.Markdown("# Basic Agent Evaluation Runner") gr.Markdown( """ **Instructions:** 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. --- **Disclaimers:** Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. """ ) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) # Removed max_rows=10 from DataFrame constructor results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_button.click( fn=run_and_submit_all, outputs=[status_output, results_table] ) if __name__ == "__main__": print("\n" + "-"*30 + " App Starting " + "-"*30) # Check for SPACE_HOST and SPACE_ID at startup for information space_host_startup = os.getenv("SPACE_HOST") space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup if space_host_startup: print(f"✅ SPACE_HOST found: {space_host_startup}") print(f" Runtime URL should be: https://{space_host_startup}.hf.space") else: print("ℹ️ SPACE_HOST environment variable not found (running locally?).") if space_id_startup: # Print repo URLs if SPACE_ID is found print(f"✅ SPACE_ID found: {space_id_startup}") print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") else: print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") print("-"*(60 + len(" App Starting ")) + "\n") print("Launching Gradio Interface for Basic Agent Evaluation...") demo.launch(debug=True, share=False)