zhiyuanhucs's picture
Update index.html
ceb3f2b verified
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="description" content="Beyond ‘Aha!’ — Systematic Meta‑Ability Alignment in Large Reasoning Models presents a three‑stage recipe that explicitly teaches deduction, induction, and abduction, achieving state‑of‑the‑art reasoning performance." />
<meta name="keywords" content="Meta‑Abilities, Deduction, Induction, Abduction, Reinforcement Learning, Large Reasoning Models" />
<title>Beyond “Aha!” — Meta‑Ability Alignment for Reasoning Models</title>
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro" rel="stylesheet" />
<link rel="stylesheet" href="./static/css/bulma.min.css" />
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css" />
<link rel="stylesheet" href="./static/css/index.css" />
<link rel="icon" href="./static/images/favicon.svg" />
<script defer src="./static/js/fontawesome.all.min.js"></script>
</head>
<body>
<!-- Header / Title -->
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">Beyond “Aha!”: Systematic Meta‑Ability Alignment in Large Reasoning Models</h1>
<div class="is-size-5 publication-authors">
<span class="author-block"><a href="https://zhiyuanhubj.github.io/" target="_blank">Zhiyuan Hu</a><sup>1</sup>,</span>
<span class="author-block"><a href="#" target="_blank">Yibo Wang</a><sup>2</sup>,</span>
<span class="author-block"><a href="https://hendrydong.github.io/" target="_blank">Hanze Dong</a><sup>3</sup>,</span>
<span class="author-block"><a href="#" target="_blank">Yuhui Xu</a><sup>3</sup>,</span>
<span class="author-block"><a href="#" target="_blank"><strong>Amrita Saha</strong></a><sup>3</sup>,</span>
<span class="author-block"><a href="http://cmxiong.com/" target="_blank"><strong>Caiming Xiong</strong></a><sup>3</sup>,</span>
<span class="author-block"><a href="https://bhooi.github.io/" target="_blank"><strong>Bryan Hooi</strong></a><sup>1</sup>,</span>
<span class="author-block"><a href="https://scholar.google.com/citations?user=MuUhwi0AAAAJ&hl=en" target="_blank"><strong>Junnan Li</strong></a><sup>3</sup></span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block"><sup>1</sup>National University of Singapore,</span>
<span class="author-block"><sup>2</sup>Tsinghua University,</span>
<span class="author-block"><sup>3</sup>Salesforce AI Research</span>
</div>
<!-- Links -->
<div class="column has-text-centered">
<div class="publication-links">
<span class="link-block">
<a href="https://github.com/zhiyuanhubj/Meta-Ability-Alignment/blob/main/Paper.pdf" target="_blank" class="external-link button is-normal is-rounded is-dark">
<span class="icon"><i class="fas fa-file-pdf"></i></span>
<span>Paper</span>
</a>
</span>
<span class="link-block">
<a href="https://github.com/zhiyuanhubj/Meta-Ability-Alignment/blob/main/Paper.pdf" target="_blank" class="external-link button is-normal is-rounded is-dark">
<span class="icon"><i class="ai ai-arxiv"></i></span>
<span>arXiv</span>
</a>
</span>
<span class="link-block">
<a href="https://github.com/zhiyuanhubj/Meta-Ability-Alignment" target="_blank" class="external-link button is-normal is-rounded is-dark">
<span class="icon"><i class="fab fa-github"></i></span>
<span>Code</span>
</a>
</span>
<span class="link-block">
<a href="https://x.com/ZhiyuanCS/status/1922734609634296004" target="_blank" class="external-link button is-normal is-rounded is-dark">
<span class="icon"><i class="far fa-images"></i></span>
<span>Twitter (X)</span>
</a>
</span>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<!-- Abstract -->
<section class="section">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>Large reasoning models (LRMs) possess a latent capacity for long chain‑of‑thought reasoning, but the timing and consistency of emergent “aha” behaviors remain unpredictable. We explicitly align LRMs with three meta‑abilities—<strong>deduction, induction, and abduction</strong>—using automatically generated, self‑verifiable tasks. Our three‑stage pipeline (individual alignment, parameter‑space merging, and domain‑specific reinforcement learning) lifts performance ceilings by&nbsp;≤10 % over instruction‑tuned baselines and delivers state‑of‑the‑art accuracy across math, coding, and science benchmarks.</p>
</div>
</div>
</div>
</div>
</section>
<!-- Results & Framework Figures -->
<section class="section is-light">
<div class="container is-max-desktop">
<h2 class="title is-3 has-text-centered">Three‑Stage Training Framework</h2>
<figure class="image">
<img src="./static/images/framework.png" alt="Three‑stage meta‑ability alignment framework diagram." />
<figcaption class="has-text-centered">Stage A: Meta‑ability alignment &nbsp;&nbsp; Stage B: Parameter‑space merging &nbsp;&nbsp; Stage C: Domain‑specific RL.</figcaption>
</figure>
<br />
<h2 class="title is-3 has-text-centered">Key Results</h2>
<figure class="image">
<img src="./static/images/results.png" alt="Performance tables showing consistent gains from meta‑ability alignment." />
<figcaption class="has-text-centered">Table&nbsp;1&nbsp;&amp;&nbsp;2: Meta‑ability alignment boosts reasoning performance at both 7B and 32B scales.</figcaption>
</figure>
</div>
</section>
<!-- Related Links (optional) -->
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>@article{hu2025metaability,
author = {Hu, Zhiyuan and Wang, Yibo and Dong, Hanze and Xu, Yuhui and Saha, Amrita and Xiong, Caiming and Hooi, Bryan and Li, Junnan},
title = {Beyond “Aha!”: Systematic Meta‑Ability Alignment in Large Reasoning Models},
journal = {Arxiv},
year = {2025}
}</code></pre>
</div>
</section>
<footer class="footer">
<div class="container">
<div class="content has-text-centered">
<a class="icon-link" target="_blank" href="https://github.com/zhiyuanhubj/Meta-Ability-Alignment/blob/main/Paper.pdf"><i class="fas fa-file-pdf"></i></a>
<a class="icon-link" target="_blank" href="https://github.com/your‑repo"><i class="fab fa-github"></i></a>
</div>
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>This website is licensed under a <a rel="license" target="_blank" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution‑ShareAlike 4.0 International License</a>.</p>
<p>You are free to reuse the <a target="_blank" href="https://github.com/nerfies/nerfies.github.io">source code</a>; please include a link back in the footer.</p>
</div>
</div>
</div>
</div>
</footer>
</body>
</html>