FLARE / run_pose_pointcloud.py
聂如
Add design file
91126af
raw
history blame
9.93 kB
import argparse
import datetime
import json
import os
import sys
import time
import math
from pathlib import Path
from typing import Sized
import mast3r.utils.path_to_dust3r # noqa
from collections import defaultdict
import copy
import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
torch.backends.cuda.matmul.allow_tf32 = True
from mast3r.model import AsymmetricMASt3R
from dust3r.datasets import get_data_loader # noqa
from dust3r.inference import loss_of_one_batch # noqa
inf = float('inf')
from mast3r.losses import MeshOutput
import dust3r.utils.path_to_croco # noqa: F401
import croco.utils.misc as misc # noqa
import torch.nn.functional as F
def get_args_parser():
parser = argparse.ArgumentParser('DUST3R training', add_help=False)
# model and criterion
parser.add_argument('--model', default="AsymmetricCroCo3DStereo(patch_embed_cls='ManyAR_PatchEmbed')",
type=str, help="string containing the model to build")
parser.add_argument('--pretrained', default=None, help='path of a starting checkpoint')
parser.add_argument('--test_criterion', default=None, type=str, help="test criterion")
# dataset
parser.add_argument('--test_dataset', default='[None]', type=str, help="testing set")
# training
parser.add_argument('--seed', default=0, type=int, help="Random seed")
parser.add_argument('--batch_size', default=1, type=int,
help="Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus")
parser.add_argument('--accum_iter', default=1, type=int,
help="Accumulate gradient iterations (for increasing the effective batch size under memory constraints)")
parser.add_argument('--epochs', default=800, type=int, help="Maximum number of epochs for the scheduler")
parser.add_argument('--weight_decay', type=float, default=0.05, help="weight decay (default: 0.05)")
parser.add_argument('--lr', type=float, default=None, metavar='LR', help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1.5e-4, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N', help='epochs to warmup LR')
parser.add_argument('--amp', type=int, default=0,
choices=[0, 1], help="Use Automatic Mixed Precision for pretraining")
# others
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--eval_freq', type=int, default=1, help='Test loss evaluation frequency')
parser.add_argument('--save_freq', default=1, type=int,
help='frequence (number of epochs) to save checkpoint in checkpoint-last.pth')
parser.add_argument('--keep_freq', default=20, type=int,
help='frequence (number of epochs) to save checkpoint in checkpoint-%d.pth')
parser.add_argument('--print_freq', default=20, type=int,
help='frequence (number of iterations) to print infos while training')
parser.add_argument('--noise_trans', default=0.05, type=float, help='translation noise')
parser.add_argument('--noise_rot', default=10, type=float, help='rotation noise')
parser.add_argument('--noise_prob', default=0.5, type=float, help='rotation noise')
parser.add_argument('--save_input_image', default=False, type=bool)
# output dir
parser.add_argument('--output_dir', default='./output/', type=str, help="path where to save the output")
return parser
def main(args):
device = "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(device)
data_loader_test = {dataset.split('(')[0]: build_dataset(dataset, args.batch_size, args.num_workers, test=True)
for dataset in args.test_dataset.split('+')}
print('Loading model: {:s}'.format(args.model))
model = eval(args.model)
test_criterion = eval(args.test_criterion or args.criterion)
model.to(device)
model_without_ddp = model
print("Model = %s" % str(model_without_ddp))
if args.pretrained:
print('Loading pretrained: ', args.pretrained)
ckpt = torch.load(args.pretrained, map_location=device)
print(model.load_state_dict(ckpt['model'], strict=False))
del ckpt # in case it occupies memory
global_rank = misc.get_rank()
if global_rank == 0 and args.output_dir is not None:
log_writer = SummaryWriter(log_dir=args.output_dir)
else:
log_writer = None
for test_name, testset in data_loader_test.items():
test_one_epoch(model, test_criterion, testset,
device, 0, log_writer=log_writer, args=args, prefix=test_name)
def build_dataset(dataset, batch_size, num_workers, test=False):
split = ['Train', 'Test'][test]
print(f'Building {split} Data loader for dataset: ', dataset)
loader = get_data_loader(dataset,
batch_size=batch_size,
num_workers=num_workers,
pin_mem=True,
shuffle=not (test),
drop_last=not (test))
print(f"{split} dataset length: ", len(loader))
return loader
def pad_to_square(reshaped_image):
B, C, H, W = reshaped_image.shape
max_dim = max(H, W)
pad_height = max_dim - H
pad_width = max_dim - W
padding = (pad_width // 2, pad_width - pad_width // 2,
pad_height // 2, pad_height - pad_height // 2)
padded_image = F.pad(reshaped_image, padding, mode='constant', value=0)
return padded_image
def generate_rank_by_dino(
reshaped_image, backbone, query_frame_num, image_size=336
):
# Downsample image to image_size x image_size
# because we found it is unnecessary to use high resolution
rgbs = pad_to_square(reshaped_image)
rgbs = F.interpolate(
reshaped_image,
(image_size, image_size),
mode="bilinear",
align_corners=True,
)
rgbs = _resnet_normalize_image(rgbs.cuda())
# Get the image features (patch level)
frame_feat = backbone(rgbs, is_training=True)
frame_feat = frame_feat["x_norm_patchtokens"]
frame_feat_norm = F.normalize(frame_feat, p=2, dim=1)
# Compute the similiarty matrix
frame_feat_norm = frame_feat_norm.permute(1, 0, 2)
similarity_matrix = torch.bmm(
frame_feat_norm, frame_feat_norm.transpose(-1, -2)
)
similarity_matrix = similarity_matrix.mean(dim=0)
distance_matrix = 100 - similarity_matrix.clone()
# Ignore self-pairing
similarity_matrix.fill_diagonal_(-100)
similarity_sum = similarity_matrix.sum(dim=1)
# Find the most common frame
most_common_frame_index = torch.argmax(similarity_sum).item()
return most_common_frame_index
_RESNET_MEAN = [0.485, 0.456, 0.406]
_RESNET_STD = [0.229, 0.224, 0.225]
_resnet_mean = torch.tensor(_RESNET_MEAN).view(1, 3, 1, 1).cuda()
_resnet_std = torch.tensor(_RESNET_STD).view(1, 3, 1, 1).cuda()
def _resnet_normalize_image(img: torch.Tensor) -> torch.Tensor:
return (img - _resnet_mean) / _resnet_std
def calculate_index_mappings(query_index, S, device=None):
"""
Construct an order that we can switch [query_index] and [0]
so that the content of query_index would be placed at [0]
"""
new_order = torch.arange(S)
new_order[0] = query_index
new_order[query_index] = 0
if device is not None:
new_order = new_order.to(device)
return new_order
@torch.no_grad()
def test_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Sized, device: torch.device, epoch: int,
args, log_writer=None, prefix='test'):
model.eval()
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.meters = defaultdict(lambda: misc.SmoothedValue(window_size=9**9))
header = 'Test Epoch: [{}]'.format(epoch)
if log_writer is not None:
print('log_dir: {}'.format(log_writer.log_dir))
if hasattr(data_loader, 'dataset') and hasattr(data_loader.dataset, 'set_epoch'):
data_loader.dataset.set_epoch(epoch)
if hasattr(data_loader, 'sampler') and hasattr(data_loader.sampler, 'set_epoch'):
data_loader.sampler.set_epoch(epoch)
try:
gt_num_image = data_loader.dataset.dataset.gt_num_image
except:
gt_num_image = data_loader.dataset.gt_num_image
backbone = torch.hub.load(
"facebookresearch/dinov2", "dinov2_vitb14_reg"
)
backbone = backbone.eval().cuda()
for i, batch in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)):
images = [gt['img_org'] for gt in batch]
images = torch.cat(images, dim=0)
images = images / 2 + 0.5
index = generate_rank_by_dino(images, backbone, query_frame_num=1)
sorted_order = calculate_index_mappings(index, len(images), device=device)
sorted_batch = []
for i in range(len(batch)):
sorted_batch.append(batch[sorted_order[i]])
batch = sorted_batch
loss_tuple = loss_of_one_batch(gt_num_image, batch, model, criterion, device,
symmetrize_batch=True,
use_amp=bool(args.amp))
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
main(args)