Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py (on Hugging Face Spaces)
|
2 |
+
import gradio as gr
|
3 |
+
import httpx
|
4 |
+
import asyncio
|
5 |
+
import json
|
6 |
+
|
7 |
+
# Replace with your Modal API endpoint URL
|
8 |
+
MODAL_API_ENDPOINT = "https://blastingneurons--collective-hive-backend-orchestrate-hive-api.modal.run"
|
9 |
+
|
10 |
+
# Helper function to format chat history for Gradio's 'messages' type
|
11 |
+
def format_chat_history_for_gradio(log_entries: list[dict]) -> list[dict]:
|
12 |
+
formatted_messages = []
|
13 |
+
for entry in log_entries:
|
14 |
+
# Default to 'System' if agent name is not found
|
15 |
+
role = entry.get("agent", "System")
|
16 |
+
content = entry.get("text", "")
|
17 |
+
formatted_messages.append({"role": role, "content": content})
|
18 |
+
return formatted_messages
|
19 |
+
|
20 |
+
async def call_modal_backend(problem_input: str, complexity: int):
|
21 |
+
full_chat_history = []
|
22 |
+
# Initial yield to clear previous state and show connecting message
|
23 |
+
yield {
|
24 |
+
"status": "Connecting to Hive...",
|
25 |
+
"chat_history": [],
|
26 |
+
"solution": "", "confidence": "", "minority_opinions": ""
|
27 |
+
}
|
28 |
+
|
29 |
+
try:
|
30 |
+
async with httpx.AsyncClient(timeout=600.0) as client: # Longer timeout for the full process
|
31 |
+
async with client.stream("POST", MODAL_API_ENDPOINT, json={"problem": problem_input, "complexity": complexity}) as response:
|
32 |
+
response.raise_for_status() # Raise an exception for HTTP errors (4xx or 5xx)
|
33 |
+
# We need to buffer chunks to ensure we parse complete JSON lines
|
34 |
+
buffer = ""
|
35 |
+
async for chunk in response.aiter_bytes():
|
36 |
+
buffer += chunk.decode('utf-8')
|
37 |
+
while "\n" in buffer:
|
38 |
+
line, buffer = buffer.split("\n", 1)
|
39 |
+
if not line.strip(): continue # Skip empty lines
|
40 |
+
try:
|
41 |
+
data = json.loads(line)
|
42 |
+
event_type = data.get("event")
|
43 |
+
|
44 |
+
if event_type == "status_update":
|
45 |
+
yield {
|
46 |
+
"status": data["data"],
|
47 |
+
"chat_history": format_chat_history_for_gradio(full_chat_history)
|
48 |
+
}
|
49 |
+
elif event_type == "chat_update":
|
50 |
+
full_chat_history.append(data["data"])
|
51 |
+
yield {
|
52 |
+
"status": "In Progress...",
|
53 |
+
"chat_history": format_chat_history_for_gradio(full_chat_history)
|
54 |
+
}
|
55 |
+
elif event_type == "final_solution":
|
56 |
+
yield {
|
57 |
+
"status": "Solution Complete!",
|
58 |
+
"chat_history": format_chat_history_for_gradio(full_chat_history + [{"agent": "System", "text": "Final solution synthesized."}]),
|
59 |
+
"solution": data["solution"],
|
60 |
+
"confidence": data["confidence"],
|
61 |
+
"minority_opinions": data["minority_opinions"]
|
62 |
+
}
|
63 |
+
return # Done processing
|
64 |
+
|
65 |
+
except json.JSONDecodeError as e:
|
66 |
+
print(f"JSON Decode Error: {e} in line: {line}")
|
67 |
+
# This could happen if a partial JSON is received.
|
68 |
+
# The buffering logic should help, but if it's consistently failing, check Modal's streaming output.
|
69 |
+
except Exception as e:
|
70 |
+
print(f"Error processing event: {e}, Data: {data}")
|
71 |
+
yield {"status": f"Error: {e}", "chat_history": format_chat_history_for_gradio(full_chat_history)}
|
72 |
+
return
|
73 |
+
|
74 |
+
except httpx.HTTPStatusError as e:
|
75 |
+
error_message = f"HTTP Error: {e.response.status_code} - {e.response.text}"
|
76 |
+
print(error_message)
|
77 |
+
yield {"status": error_message, "chat_history": format_chat_history_for_gradio(full_chat_history)}
|
78 |
+
except httpx.RequestError as e:
|
79 |
+
error_message = f"Request Error: Could not connect to Modal backend: {e}"
|
80 |
+
print(error_message)
|
81 |
+
yield {"status": error_message, "chat_history": format_chat_history_for_gradio(full_chat_history)}
|
82 |
+
except Exception as e:
|
83 |
+
error_message = f"An unexpected error occurred: {e}"
|
84 |
+
print(error_message)
|
85 |
+
yield {"status": error_message, "chat_history": format_chat_history_for_gradio(full_chat_history)}
|
86 |
+
|
87 |
+
yield {"status": "Process finished unexpectedly or ended.", "chat_history": format_chat_history_for_gradio(full_chat_history)}
|
88 |
+
|
89 |
+
|
90 |
+
with gr.Blocks() as demo:
|
91 |
+
gr.Markdown("# Collective Intelligence Hive")
|
92 |
+
gr.Markdown("Enter a problem and watch a hive of AI agents collaborate to solve it! Powered by Modal and Nebius.")
|
93 |
+
|
94 |
+
with gr.Row():
|
95 |
+
problem_input = gr.Textbox(label="Problem to Solve", lines=3, placeholder="e.g., 'Develop a marketing strategy for a new eco-friendly smart home device targeting millennials.'", scale=3)
|
96 |
+
complexity_slider = gr.Slider(minimum=1, maximum=5, value=3, step=1, label="Problem Complexity", scale=1)
|
97 |
+
|
98 |
+
initiate_btn = gr.Button("Initiate Hive", variant="primary")
|
99 |
+
|
100 |
+
status_output = gr.Textbox(label="Hive Status", interactive=False)
|
101 |
+
|
102 |
+
with gr.Row():
|
103 |
+
with gr.Column(scale=2):
|
104 |
+
chat_display = gr.Chatbot(
|
105 |
+
label="Agent Discussion Log",
|
106 |
+
height=500,
|
107 |
+
type='messages',
|
108 |
+
autoscroll=True
|
109 |
+
)
|
110 |
+
|
111 |
+
with gr.Column(scale=1):
|
112 |
+
solution_output = gr.Textbox(label="Synthesized Solution", lines=10, interactive=False)
|
113 |
+
confidence_output = gr.Textbox(label="Solution Confidence", interactive=False)
|
114 |
+
minority_output = gr.Textbox(label="Minority Opinions", lines=3, interactive=False)
|
115 |
+
|
116 |
+
initiate_btn.click(
|
117 |
+
call_modal_backend,
|
118 |
+
inputs=[problem_input, complexity_slider],
|
119 |
+
outputs=[
|
120 |
+
status_output,
|
121 |
+
chat_display,
|
122 |
+
solution_output,
|
123 |
+
confidence_output,
|
124 |
+
minority_output
|
125 |
+
],
|
126 |
+
queue=True
|
127 |
+
)
|
128 |
+
|
129 |
+
demo.launch()
|