zerocool commited on
Commit
9b867b0
·
verified ·
1 Parent(s): c75f3a3

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +129 -0
app.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # app.py (on Hugging Face Spaces)
2
+ import gradio as gr
3
+ import httpx
4
+ import asyncio
5
+ import json
6
+
7
+ # Replace with your Modal API endpoint URL
8
+ MODAL_API_ENDPOINT = "https://blastingneurons--collective-hive-backend-orchestrate-hive-api.modal.run"
9
+
10
+ # Helper function to format chat history for Gradio's 'messages' type
11
+ def format_chat_history_for_gradio(log_entries: list[dict]) -> list[dict]:
12
+ formatted_messages = []
13
+ for entry in log_entries:
14
+ # Default to 'System' if agent name is not found
15
+ role = entry.get("agent", "System")
16
+ content = entry.get("text", "")
17
+ formatted_messages.append({"role": role, "content": content})
18
+ return formatted_messages
19
+
20
+ async def call_modal_backend(problem_input: str, complexity: int):
21
+ full_chat_history = []
22
+ # Initial yield to clear previous state and show connecting message
23
+ yield {
24
+ "status": "Connecting to Hive...",
25
+ "chat_history": [],
26
+ "solution": "", "confidence": "", "minority_opinions": ""
27
+ }
28
+
29
+ try:
30
+ async with httpx.AsyncClient(timeout=600.0) as client: # Longer timeout for the full process
31
+ async with client.stream("POST", MODAL_API_ENDPOINT, json={"problem": problem_input, "complexity": complexity}) as response:
32
+ response.raise_for_status() # Raise an exception for HTTP errors (4xx or 5xx)
33
+ # We need to buffer chunks to ensure we parse complete JSON lines
34
+ buffer = ""
35
+ async for chunk in response.aiter_bytes():
36
+ buffer += chunk.decode('utf-8')
37
+ while "\n" in buffer:
38
+ line, buffer = buffer.split("\n", 1)
39
+ if not line.strip(): continue # Skip empty lines
40
+ try:
41
+ data = json.loads(line)
42
+ event_type = data.get("event")
43
+
44
+ if event_type == "status_update":
45
+ yield {
46
+ "status": data["data"],
47
+ "chat_history": format_chat_history_for_gradio(full_chat_history)
48
+ }
49
+ elif event_type == "chat_update":
50
+ full_chat_history.append(data["data"])
51
+ yield {
52
+ "status": "In Progress...",
53
+ "chat_history": format_chat_history_for_gradio(full_chat_history)
54
+ }
55
+ elif event_type == "final_solution":
56
+ yield {
57
+ "status": "Solution Complete!",
58
+ "chat_history": format_chat_history_for_gradio(full_chat_history + [{"agent": "System", "text": "Final solution synthesized."}]),
59
+ "solution": data["solution"],
60
+ "confidence": data["confidence"],
61
+ "minority_opinions": data["minority_opinions"]
62
+ }
63
+ return # Done processing
64
+
65
+ except json.JSONDecodeError as e:
66
+ print(f"JSON Decode Error: {e} in line: {line}")
67
+ # This could happen if a partial JSON is received.
68
+ # The buffering logic should help, but if it's consistently failing, check Modal's streaming output.
69
+ except Exception as e:
70
+ print(f"Error processing event: {e}, Data: {data}")
71
+ yield {"status": f"Error: {e}", "chat_history": format_chat_history_for_gradio(full_chat_history)}
72
+ return
73
+
74
+ except httpx.HTTPStatusError as e:
75
+ error_message = f"HTTP Error: {e.response.status_code} - {e.response.text}"
76
+ print(error_message)
77
+ yield {"status": error_message, "chat_history": format_chat_history_for_gradio(full_chat_history)}
78
+ except httpx.RequestError as e:
79
+ error_message = f"Request Error: Could not connect to Modal backend: {e}"
80
+ print(error_message)
81
+ yield {"status": error_message, "chat_history": format_chat_history_for_gradio(full_chat_history)}
82
+ except Exception as e:
83
+ error_message = f"An unexpected error occurred: {e}"
84
+ print(error_message)
85
+ yield {"status": error_message, "chat_history": format_chat_history_for_gradio(full_chat_history)}
86
+
87
+ yield {"status": "Process finished unexpectedly or ended.", "chat_history": format_chat_history_for_gradio(full_chat_history)}
88
+
89
+
90
+ with gr.Blocks() as demo:
91
+ gr.Markdown("# Collective Intelligence Hive")
92
+ gr.Markdown("Enter a problem and watch a hive of AI agents collaborate to solve it! Powered by Modal and Nebius.")
93
+
94
+ with gr.Row():
95
+ problem_input = gr.Textbox(label="Problem to Solve", lines=3, placeholder="e.g., 'Develop a marketing strategy for a new eco-friendly smart home device targeting millennials.'", scale=3)
96
+ complexity_slider = gr.Slider(minimum=1, maximum=5, value=3, step=1, label="Problem Complexity", scale=1)
97
+
98
+ initiate_btn = gr.Button("Initiate Hive", variant="primary")
99
+
100
+ status_output = gr.Textbox(label="Hive Status", interactive=False)
101
+
102
+ with gr.Row():
103
+ with gr.Column(scale=2):
104
+ chat_display = gr.Chatbot(
105
+ label="Agent Discussion Log",
106
+ height=500,
107
+ type='messages',
108
+ autoscroll=True
109
+ )
110
+
111
+ with gr.Column(scale=1):
112
+ solution_output = gr.Textbox(label="Synthesized Solution", lines=10, interactive=False)
113
+ confidence_output = gr.Textbox(label="Solution Confidence", interactive=False)
114
+ minority_output = gr.Textbox(label="Minority Opinions", lines=3, interactive=False)
115
+
116
+ initiate_btn.click(
117
+ call_modal_backend,
118
+ inputs=[problem_input, complexity_slider],
119
+ outputs=[
120
+ status_output,
121
+ chat_display,
122
+ solution_output,
123
+ confidence_output,
124
+ minority_output
125
+ ],
126
+ queue=True
127
+ )
128
+
129
+ demo.launch()