Update app.py
Browse files
app.py
CHANGED
@@ -29,9 +29,31 @@ model = PeftModel.from_pretrained(base_model, "unica/CLiMA")
|
|
29 |
# Load tokenizer
|
30 |
tokenizer = AutoTokenizer.from_pretrained(peft_config.base_model_name_or_path)
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
# Format prompt
|
33 |
def format_prompt(user_input, entity1, entity2):
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# Prediction function
|
37 |
def generate_relations(text, entity1, entity2):
|
|
|
29 |
# Load tokenizer
|
30 |
tokenizer = AutoTokenizer.from_pretrained(peft_config.base_model_name_or_path)
|
31 |
|
32 |
+
prompt_instruction_drug_reviews = f"""Given a drug review enclosed in triple quotes and a pair of entities E1 corresponding to the drug name and E2 corresponding to the treated condition, classify the relation holding between E1 and E2.
|
33 |
+
The relations are identified with 9 labels from 0 to 8. The meaning of the labels is the following:
|
34 |
+
0 means that E1 causes E2
|
35 |
+
1 means that E2 causes E1
|
36 |
+
2 means that E1 enables E2
|
37 |
+
3 means that E2 enables E1
|
38 |
+
4 means that E1 prevents E2
|
39 |
+
5 means that E2 prevents E1
|
40 |
+
6 means that E1 hinders E2
|
41 |
+
7 means that E2 hinders E1
|
42 |
+
8 means that E1 and E2 are in a relation different than any of the previous ones.
|
43 |
+
Given X the label that you predicted, for the output use the format LABEL: X
|
44 |
+
"""
|
45 |
+
|
46 |
+
|
47 |
# Format prompt
|
48 |
def format_prompt(user_input, entity1, entity2):
|
49 |
+
#return f"Identify causal relations in the following clinical narrative:\n\n{user_input}\n\nEntity 1: {entity1}\nEntity 2: {entity2}\n\nCausal relations:"
|
50 |
+
text = user_input
|
51 |
+
prompt_text = f"Text:'''{text}'''"
|
52 |
+
e1 = entity1
|
53 |
+
e2 = entity2
|
54 |
+
prompt_entities = f"\nEntities: E1: '''{e1}''', E2: '''{e2}'''"
|
55 |
+
full_prompt = f"<USER> {prompt_instruction_drug_reviews} {prompt_text} {prompt_entities} <ASSISTANT>"
|
56 |
+
return full_prompt
|
57 |
|
58 |
# Prediction function
|
59 |
def generate_relations(text, entity1, entity2):
|