AECO_Tech_Dashboard / dashboard.py
zavavan's picture
Upload dashboard.py
a7df175 verified
raw
history blame
27.2 kB
import warnings
warnings.filterwarnings("ignore")
import io
import os
import time
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.simplefilter(action='ignore', category=RuntimeWarning)
import pandas as pd
import csv
import ast
from tqdm import tqdm
from operator import itemgetter
import numpy as np
import re
import datetime
import html
from joblib import Parallel, delayed
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
#plt.style.use('seaborn-paper')
import holoviews as hv
from holoviews import opts, dim
from bokeh.sampledata.les_mis import data
from bokeh.io import show
from bokeh.sampledata.les_mis import data
import panel as pn
import bokeh
from bokeh.resources import INLINE
from holoviews.operation.timeseries import rolling, rolling_outlier_std
hv.extension('bokeh')
## LOAD DATASETS
data_folder = './data'
country_name_df = pd.read_csv(os.path.join(data_folder, 'country_name_map.tsv'), header=0, sep='\t', lineterminator='\n', low_memory=False)
country_name_map = dict(zip(country_name_df.Country_Code, country_name_df.Country_Name))
total_publications_time_indexed = pd.read_csv(os.path.join(data_folder, 'total_publications_time_indexed.tsv'), header=0, sep='\t', lineterminator='\n', low_memory=False)
country_publications_time_indexed = pd.read_csv(os.path.join(data_folder, 'country_publications_time_indexed.tsv'), header=0, sep='\t', lineterminator='\n', low_memory=False)
## AECO topic over time html file:
AECO_topics_over_time_file_path = '/assets/optimized_merged_AECO_topics_over_time_2D_gpt_labels.html'
AECO_topics_dendogram_file_path = '/assets/topic_hierarchy_optimal_params.htm'
AECO_topic_map_path = '/assets/document_datamap_ver0.html'
regions = ['eu', 'us', 'eu_us']
sorted_ent_type_freq_map_eu=dict()
sorted_ent_type_freq_map_us=dict()
sorted_ent_type_freq_map_eu_us=dict()
def read_top_ent_types():
reader = csv.reader(open(os.path.join(data_folder, 'sorted_ent_type_freq_map_eu.tsv'), 'r'))
for i,row in enumerate(reader):
if i < 20:
k, v = row
sorted_ent_type_freq_map_eu[k] = int(v)
del sorted_ent_type_freq_map_eu['Entity']
reader = csv.reader(open(os.path.join(data_folder, 'sorted_ent_type_freq_map_us.tsv'), 'r'))
for i, row in enumerate(reader):
if i < 20:
k, v = row
sorted_ent_type_freq_map_us[k] = int(v)
del sorted_ent_type_freq_map_us['Entity']
reader = csv.reader(open(os.path.join(data_folder, 'sorted_ent_type_freq_map_eu_us.tsv'), 'r'))
for i, row in enumerate(reader):
if i < 20:
k, v = row
sorted_ent_type_freq_map_eu_us[k] = int(v)
del sorted_ent_type_freq_map_eu_us['Entity']
read_top_ent_types()
top_type_filtered_eu = ['DBpedia:Country', 'DBpedia:Organisation', 'DBpedia:Company', 'DBpedia:Person', 'DBpedia:Disease', 'DBpedia:ChemicalSubstance', 'DBpedia:Drug', 'DBpedia:GovernmentAgency', 'DBpedia:City', 'DBpedia:MonoclonalAntibody']
top_type_filtered_us = ['DBpedia:Organisation', 'DBpedia:Company', 'DBpedia:Disease', 'DBpedia:ChemicalSubstance', 'DBpedia:Person', 'DBpedia:Drug', 'DBpedia:Country', 'DBpedia:Region', 'DBpedia:MonoclonalAntibody', 'DBpedia:City', 'DBpedia:Biomolecule']
top_type_filtered_eu_us = ['DBpedia:Organisation', 'DBpedia:Company', 'DBpedia:ChemicalSubstance', 'DBpedia:Drug', 'DBpedia:Country', 'DBpedia:Person', 'DBpedia:Disease', 'DBpedia:MonoclonalAntibody', 'DBpedia:GovernmentAgency', 'DBpedia:Biomolecule', 'DBpedia:Gene']
def read_top_ent_maps():
reader = csv.reader(open(os.path.join(data_folder, 'sorted_ent_freq_map_eu.tsv'), 'r'), delimiter='\t')
for row in reader:
k,v = row
lista = ast.literal_eval(v)
dizionario = dict()
for pair in lista:
dizionario[pair[0]]=pair[1]
dizionario = sorted(dizionario.items(), key=lambda x: x[1], reverse=True)
ent_freq_maps_eu[k]=dizionario
reader = csv.reader(open(os.path.join(data_folder, 'sorted_ent_freq_map_us.tsv'), 'r'), delimiter='\t')
for row in reader:
k, v = row
lista = ast.literal_eval(v)
dizionario = dict()
for pair in lista:
dizionario[pair[0]] = pair[1]
dizionario = sorted(dizionario.items(), key=lambda x: x[1], reverse=True)
ent_freq_maps_us[k] = dizionario
reader = csv.reader(open(os.path.join(data_folder, 'sorted_ent_freq_map_eu_us.tsv'), 'r'), delimiter='\t')
for row in reader:
k, v = row
lista = ast.literal_eval(v)
dizionario = dict()
for pair in lista:
dizionario[pair[0]] = pair[1]
dizionario = sorted(dizionario.items(), key=lambda x: x[1], reverse=True)
ent_freq_maps_eu_us[k] = dizionario
ent_freq_maps_eu = dict()
ent_freq_maps_us = dict()
ent_freq_maps_eu_us = dict()
read_top_ent_maps()
def read_type_filtered_triples():
for t in top_type_filtered_eu:
df = pd.read_csv(data_folder+'/filtered_rows/eu/'+t.replace(':','_')+'.tsv', sep=" ", header=0)
df.drop(columns=['Unnamed: 0'], inplace=True)
top_type_filtered_triples_eu[t]=df
for t in top_type_filtered_us:
df = pd.read_csv(data_folder+'/filtered_rows/us/'+t.replace(':','_')+'.tsv', sep=" ")
df.drop(columns=['Unnamed: 0'], inplace=True)
top_type_filtered_triples_us[t]=df
for t in top_type_filtered_eu_us:
df = pd.read_csv(data_folder+'/filtered_rows/eu_us/'+t.replace(':','_')+'.tsv', sep=" ")
df.drop(columns=['Unnamed: 0'], inplace=True)
top_type_filtered_triples_eu_us[t]=df
top_type_filtered_triples_eu = dict()
top_type_filtered_triples_us = dict()
top_type_filtered_triples_eu_us = dict()
read_type_filtered_triples()
grouping_filtered = pd.read_csv(os.path.join(data_folder, 'dna_relations.tsv'), sep=" ")
################################# CREATE CHARTS ############################
################################# CREATE CHARTS ############################
# Hook function to customize x-axis for Bokeh
def customize_x_axis_bokeh(plot, element):
bokeh_plot = plot.state
bokeh_plot.xaxis.major_label_orientation = 45 # Rotate x-axis labels
def create_publication_curve_chart():
country_name_df = pd.read_csv(os.path.join(data_folder, 'country_name_map.tsv'), header=0, sep='\t', lineterminator='\n', low_memory=False)
country_name_map = dict(zip(country_name_df.Country_Code, country_name_df.Country_Name))
country_name_map
total_publications_time_indexed = pd.read_csv(os.path.join(data_folder, 'total_publications_time_indexed.tsv'), header=0, sep='\t', lineterminator='\n', low_memory=False)
country_publications_time_indexed = pd.read_csv(os.path.join(data_folder, 'country_publications_time_indexed.tsv'), header=0, sep='\t', lineterminator='\n', low_memory=False)
total_publications_time_indexed.id = np.log1p(total_publications_time_indexed.id)
country_publications_time_indexed = country_publications_time_indexed.applymap(lambda x: np.log1p(x) if np.issubdtype(type(x), np.number) else x)
curve_total = hv.Curve((total_publications_time_indexed.month_bin, total_publications_time_indexed.id), 'Time', 'Publication Counts (log)',label='Total')
#Overlay the line plots
overlay = curve_total
curve_countries = []
for country in country_name_map.keys():
overlay = overlay * hv.Curve((total_publications_time_indexed.month_bin, country_publications_time_indexed[country]), label=country_name_map[country])
overlay.opts(show_legend=True,legend_position='right', width=1200, height=500, hooks=[customize_x_axis_bokeh])
return overlay
macro_topics = ["Energy Efficiency and Thermal Comfort in Building Environments","Indoor Air Quality and Sustainable Air Conditioning Systems","Urban Development Strategies and Sustainable City Planning", "Enhancing Child-Friendly Urban Spaces Through Design", "Smart city development and urban data management", "Urban Resilience and Green Infrastructure in Climate Change Planning","Architectural Integration of Solar Photovoltaic Systems in Buildings","Preservation and Evolution of Traditional Architecture in Modern Contexts","Sustainable Building Construction and Design with Environmental Assessment","Landscape Planning and Design Theory", "Urban Sound Environment Research in Architectural Design","Sustainable Construction Materials and Technologies","Utilizing BIM in Construction and Building Information Modeling Industry","Urban Agriculture and Sustainable Food Systems","Sustainable Bridge Design and Construction", "Investigation of Cavity Dynamics and Heat Transfer in Various Flow Scenarios"]
macro_topics_active_subset = ["Energy Efficiency and Thermal Comfort in Building Environments","Indoor Air Quality and Sustainable Air Conditioning Systems","Urban Development Strategies and Sustainable City Planning", "Enhancing Child-Friendly Urban Spaces Through Design", "Smart city development and urban data management", "Urban Resilience and Green Infrastructure in Climate Change Planning","Architectural Integration of Solar Photovoltaic Systems in Buildings","Preservation and Evolution of Traditional Architecture in Modern Contexts","Sustainable Building Construction and Design with Environmental Assessment","Landscape Planning and Design Theory", "Urban Sound Environment Research in Architectural Design","Sustainable Construction Materials and Technologies","Utilizing BIM in Construction and Building Information Modeling Industry","Urban Agriculture and Sustainable Food Systems","Sustainable Bridge Design and Construction", "Investigation of Cavity Dynamics and Heat Transfer in Various Flow Scenarios"]
def load_institute_network(topic, **kwargs):
if topic=='Energy Efficiency and Thermal Comfort in Building Environments':
html = """<iframe src="https://app.vosviewer.com/?json=https%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D16q1oLQyEeMosAgeD9UkC9hSrpzAYX_-n" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Indoor Air Quality and Sustainable Air Conditioning Systems':
html = """<iframe src="https://app.vosviewer.com/?json=https%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D1rqPx3X_9Hnv9mTq2bMCbWWh5VIOw9CRh" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Urban Development Strategies and Sustainable City Planning':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Enhancing Child-Friendly Urban Spaces Through Design':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Smart city development and urban data management':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Urban Resilience and Green Infrastructure in Climate Change Planning':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Architectural Integration of Solar Photovoltaic Systems in Buildings':
html = """<iframe src="https://app.vosviewer.com/?json=https%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D1BC0Dbmayyxv3G9wLt2fUSTiUL2vwzuLD" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Preservation and Evolution of Traditional Architecture in Modern Contexts':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Sustainable Building Construction and Design with Environmental Assessment':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Landscape Planning and Design Theory':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Urban Sound Environment Research in Architectural Design':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Sustainable Construction Materials and Technologies':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Utilizing BIM in Construction and Building Information Modeling Industry':
html = """<iframe src="https://app.vosviewer.com/?json=https%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D1V-Cto19dxV_GR3MtNP6Yk642CnTQkjEK" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Urban Agriculture and Sustainable Food Systems':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Sustainable Bridge Design and Construction':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Investigation of Cavity Dynamics and Heat Transfer in Various Flow Scenarios':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
def load_country_network(topic, **kwargs):
if topic=='Energy Efficiency and Thermal Comfort in Building Environments':
html = """<iframe src="https://app.vosviewer.com/?json=https%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D1W-ZjXP5vpJ7pwaCT7KFjh1txNgBkIT6h" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Indoor Air Quality and Sustainable Air Conditioning Systems':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Urban Development Strategies and Sustainable City Planning':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Enhancing Child-Friendly Urban Spaces Through Design':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Smart city development and urban data management':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Urban Resilience and Green Infrastructure in Climate Change Planning':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Architectural Integration of Solar Photovoltaic Systems in Buildings':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Preservation and Evolution of Traditional Architecture in Modern Contexts':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Sustainable Building Construction and Design with Environmental Assessment':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Landscape Planning and Design Theory':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Urban Sound Environment Research in Architectural Design':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Sustainable Construction Materials and Technologies':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Utilizing BIM in Construction and Building Information Modeling Industry':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Urban Agriculture and Sustainable Food Systems':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Sustainable Bridge Design and Construction':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Investigation of Cavity Dynamics and Heat Transfer in Various Flow Scenarios':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
############################# WIDGETS & CALLBACK ###########################################
def filter_data0(df, min_value):
filtered_df = df[df['value'] >= min_value]
return filtered_df
def plot_chord0_new(df,min_value):
filtered_df = filter_data0(df, min_value)
# Create a Holoviews Dataset for nodes
nodes = hv.Dataset(filtered_df, 'index')
nodes.data.head()
chord = hv.Chord(filtered_df, ['source', 'target'], ['value'])
return chord.opts(opts.Chord(cmap='Category20', edge_cmap='Category20', label_text_color="white", node_color = hv.dim('index').str(), edge_color = hv.dim('source').str(), labels = 'index', tools=['hover'], width=800, height=800))
def retrieveRegionTypes(region):
if region == 'eu':
return top_type_filtered_eu
elif region == 'us':
return top_type_filtered_us
elif region == 'eu_us':
return top_type_filtered_eu_us
def filter_region(region):
if region == 'eu':
region_grouping = grouping_filtered[grouping_filtered['region'] == 'eu']
elif region == 'us':
region_grouping = grouping_filtered[grouping_filtered['region'] == 'us']
elif region == 'eu_us':
region_grouping = grouping_filtered[grouping_filtered['region'] == 'eu_us']
#print(len(region_grouping))
# Define range for minimum value slider
min_value_range = region_grouping['value'].unique()
min_value_range.sort()
# Define HoloMap with minimum value and attribute as key dimensions
holomap = hv.HoloMap({min_value: plot_chord0_new(region_grouping, min_value)
for min_value in min_value_range},
kdims=['Show triples with support greater than']
)
return holomap
# Define a function to generate Entity List RadioButtonGroup based on Region selection
def generate_radio_buttons(value):
if value == 'eu':
return pn.widgets.RadioButtonGroup(options=retrieveRegionTypes(value), value='DBpedia:Company', name='eu', orientation='vertical')
elif value == 'us':
return pn.widgets.RadioButtonGroup(options=retrieveRegionTypes(value), value='DBpedia:Disease', name='us', orientation='vertical')
elif value == 'eu_us':
return pn.widgets.RadioButtonGroup(options=retrieveRegionTypes(value), value='DBpedia:Person', name='eu_us', orientation='vertical')
# https://tabler-icons.io/
button0 = pn.widgets.Button(name="Introduction", button_type="warning", icon="file-info", styles={"width": "100%"})
button1 = pn.widgets.Button(name="Publication Trends", button_type="warning", icon="chart-histogram", styles={"width": "100%"})
button2 = pn.widgets.Button(name="Topic Map", button_type="warning", icon="chart-dots-3", styles={"width": "100%"})
button3 = pn.widgets.Button(name="AECO Macro Topics Hierarchy", button_type="warning", icon="chart-dots-3", styles={"width": "100%"})
button4 = pn.widgets.Button(name="AECO Macro Topics Trends", button_type="warning", icon="chart-histogram", styles={"width": "100%"})
button5 = pn.widgets.Button(name="Research Collaboration Networks: Institutes", button_type="warning", icon="chart-dots-3", styles={"width": "100%"})
button6 = pn.widgets.Button(name="Research Collaboration Networks: Countries", button_type="warning", icon="chart-dots-3", styles={"width": "100%"})
region1 = pn.widgets.RadioButtonGroup(name='### Select News Region', options=regions)
macro_topics_button = pn.widgets.Select(name='Select Macro Topic', value='Energy-Efficient Building Design for Thermal Comfort and Sustainability', options=macro_topics_active_subset)
# Initial RadioButtonGroup
radio_buttons_regions = pn.widgets.RadioButtonGroup(options=regions,value='eu',name='Select region')
# Generate initial dynamic RadioButtonGroup
radio_buttons_types = generate_radio_buttons(radio_buttons_regions.value)
# Define a callback function to update the panel dynamically
def update_radio_group(event):
#print(event.new)
#print(retrieveRegionTypes(event.new))
radio_buttons_types.options = retrieveRegionTypes(event.new)
# bind the function to the widget(s)
# Bind the selected value of the first RadioButtonGroup to update the second RadioButtonGroup
radio_buttons_regions.param.watch(update_radio_group, 'value')
# Define the callback function to update the HoloMap
def update_holomap(event):
initial_holomap.object = filter_region(event.new)
region_radio_button = pn.widgets.RadioButtonGroup(options=regions, value='eu', name='Select Region')
# Create the initial HoloMap
initial_holomap = filter_region(region_radio_button.value)
# Bind the callback function to the value change event of the RadioButton widget
region_radio_button.param.watch(update_holomap, 'value')
def show_page(page_key):
main_area.clear()
main_area.append(mapping[page_key])
button0.on_click(lambda event: show_page("Page0"))
button1.on_click(lambda event: show_page("Page1"))
button2.on_click(lambda event: show_page("Page2"))
button3.on_click(lambda event: show_page("Page3"))
button4.on_click(lambda event: show_page("Page4"))
button5.on_click(lambda event: show_page("Page5"))
button6.on_click(lambda event: show_page("Page6"))
#button6.on_click(lambda event: show_page("Page6"))
### CREATE PAGE LAYOUTS
def CreatePage0():
return pn.Column(pn.pane.Markdown("""
This is a dashboard for a Research Analysis project regarding research and technology in the AECO domain. The source data consists of around
276k English-language research papers gathered from the openalex.org graph database, covering a timeframe from 2011 through 2024.
---------------------------
## AECO Topic Map
In the AECO Topic Map panel we show the 6-month-sampled time series depicting the number of published research papers
for the 16 macro-topics automatically detected by an optimized BerTopic model and ppst-processed for manual topic merging.
## AECO Macro Topics
In the AECO Macro Topics panel we present the 6-month-sampled time series depicting the number of published research papers
for the 16 macro-topics automatically detected by an optimized BerTopic model and ppst-processed for manual topic merging.
### Research Collaboration Networks: Institutes
### Research Collaboration Networks: Authors
""", width=800), align="center")
def CreatePage1():
return pn.Column(
pn.pane.Markdown("## Publication Trends "),
create_publication_curve_chart(),
align="center",
)
def CreatePage2():
# Load the HTML content from the local file
#with open(AECO_topics_over_time_file_path, 'r', encoding='utf-8') as file:
# html_content = file.read()
# Use an iframe to load the local HTML file
iframe_html = f'<iframe src="{AECO_topic_map_path}" width="1200px" height="1800px"></iframe>'
# Create an HTML pane to render the content
html_pane = pn.pane.HTML(iframe_html , sizing_mode='stretch_both')
return pn.Column(pn.pane.Markdown(" ## AECO Topic Map "), html_pane, align="center")
def CreatePage3():
# Load the HTML content from the local file
#with open(AECO_topics_over_time_file_path, 'r', encoding='utf-8') as file:
# html_content = file.read()
# Use an iframe to load the local HTML file
iframe_html = f'<iframe src="{AECO_topics_dendogram_file_path}" width="1200px" height="1800px"></iframe>'
# Create an HTML pane to render the content
html_pane = pn.pane.HTML(iframe_html , sizing_mode='stretch_both')
return pn.Column(pn.pane.Markdown(" ## AECO Macro Topics Dendogram "), html_pane, align="center")
def CreatePage4():
# Load the HTML content from the local file
#with open(AECO_topics_over_time_file_path, 'r', encoding='utf-8') as file:
# html_content = file.read()
# Use an iframe to load the local HTML file
iframe_html = f'<iframe src="{AECO_topics_over_time_file_path}" width="1200px" height="1800px"></iframe>'
# Create an HTML pane to render the content
html_pane = pn.pane.HTML(iframe_html , sizing_mode='stretch_both')
return pn.Column(pn.pane.Markdown(" ## AECO Macro Topics "), html_pane, align="center")
def CreatePage5():
return pn.Column(
macro_topics_button,
pn.bind(load_institute_network, macro_topics_button),
align="center",
)
def CreatePage6():
return pn.Column(
macro_topics_button,
pn.bind(load_country_network, macro_topics_button),
align="center",
)
def CreatePage6():
html = """<iframe src="https://app.vosviewer.com/?json=https%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D16q1oLQyEeMosAgeD9UkC9hSrpzAYX_-n" width="800" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
#url = 'https://app.vosviewer.com/?json=https%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D16q1oLQyEeMosAgeD9UkC9hSrpzAYX_-n'
return html_pane
#panel.show()
#return pn.Column(
# pn.pane.Markdown("## VOSViewer Network "),
# pn.Row(panel)
# )
mapping = {
"Page0": CreatePage0(),
"Page1": CreatePage1(),
"Page2": CreatePage2(),
"Page3": CreatePage3(),
"Page4": CreatePage4(),
"Page5": CreatePage5(),
"Page6": CreatePage6()
}
#################### SIDEBAR LAYOUT ##########################
sidebar = pn.Column(pn.pane.Markdown("## Pages"),button0,button1,button2,button3,button4,button5,button6,
#button5,
#button6,
styles={"width": "100%", "padding": "15px"})
#################### MAIN AREA LAYOUT ##########################
main_area = pn.Column(mapping["Page1"], styles={"width":"100%"})
###################### APP LAYOUT ##############################
template = pn.template.BootstrapTemplate(
title=" AECO Tech Dashboard",
sidebar=[sidebar],
main=[main_area],
header_background="black",
#site="Charting the Landscape of AECO Research",
theme=pn.template.DarkTheme,
sidebar_width=330, ## Default is 330
busy_indicator=pn.indicators.BooleanStatus(value=True),
)
### DEPLOY APP
# Serve the Panel app
template.servable()