Spaces:
Sleeping
Sleeping
File size: 35,886 Bytes
4bfc55c 4435d63 5d5bc80 e186be4 5d5bc80 4435d63 521e71f e5730a3 4435d63 e1e6335 4435d63 6fc0a4d 52413b9 34f85e7 6fc0a4d 19d49ec 7e8aad4 8dc99e2 77d278c 6fc0a4d 34f85e7 6fc0a4d 4435d63 6fc0a4d 34f85e7 6fc0a4d 4435d63 6fc0a4d 34f85e7 6fc0a4d 34f85e7 6fc0a4d 34f85e7 6fc0a4d 34f85e7 6fc0a4d 34f85e7 6fc0a4d 34f85e7 6fc0a4d 34f85e7 6fc0a4d 34f85e7 4bfc55c 26c620e 4bfc55c bc8f9bb 29d5f65 4bfc55c 6e8471f 4bfc55c 34f85e7 f390488 6fc0a4d 9d5ea5c 2c1efa2 7b88260 34f85e7 9d5ea5c 5d5bc80 9d5ea5c 88dc9d6 9d5ea5c 34f85e7 9d5ea5c 6fc0a4d 34f85e7 9d5ea5c c803036 6fc0a4d 34f85e7 83f4ed1 b841058 6fc0a4d fba3086 f5ffc1d b841058 fba3086 f5ffc1d 84fc798 fba3086 f5ffc1d 84fc798 fba3086 f5ffc1d b841058 fba3086 f5ffc1d 17044f7 fba3086 f5ffc1d 6fc0a4d a985384 f5ffc1d b841058 a985384 f5ffc1d 133ff3e a985384 f5ffc1d a985384 f5ffc1d 133ff3e a985384 f5ffc1d 133ff3e a985384 f5ffc1d b841058 f5ffc1d adfe2a3 f5ffc1d 6fc0a4d 4bfc55c d96c2fb 4bfc55c 30c96c5 4bfc55c 6fc0a4d e5730a3 b52ed25 e1e6335 b5ad794 4ae3280 e1e6335 ff02658 dfb00c6 e1e6335 dfb00c6 17d13e8 dfb00c6 4ae3280 0572d22 2b24d04 ce2da58 18a06db 2ff9fdc 18a06db a5bbf1e 18a06db ce2da58 981b62f f6fef17 04c77dd f6fef17 981b62f a5bbf1e 1f9da65 f6fef17 2a66489 4ae3280 ce2da58 f6fef17 2a66489 b5ad794 e1e6335 19def65 2652201 c1ce398 2d5a65e ef12036 f6fef17 e1e6335 26c0bdd 0572d22 f6fef17 0572d22 6fc0a4d e380a56 34f85e7 5d5bc80 34f85e7 4bfc55c 34f85e7 6fc0a4d 4424c93 6fc0a4d e380a56 6fc0a4d f87790d a985384 88cdcd8 34f85e7 4bfc55c 6fc0a4d e380a56 6fc0a4d 5d5bc80 e186be4 6fc0a4d 5d5bc80 e186be4 5d5bc80 e186be4 5d5bc80 e186be4 5d5bc80 e186be4 5d5bc80 88cdcd8 6fc0a4d 5d5bc80 e186be4 6fc0a4d b2817b2 c2c3b43 b2817b2 e186be4 6fc0a4d 34f85e7 dad694e 88cdcd8 34f85e7 e380a56 e186be4 e380a56 ab25b50 e380a56 88cdcd8 34f85e7 88cdcd8 e186be4 88cdcd8 34f85e7 6fc0a4d e186be4 6fc0a4d 2c6b734 6fc0a4d 34f85e7 6fc0a4d fba3086 6fc0a4d 4435d63 6fc0a4d a985384 34f85e7 6fc0a4d a985384 4bfc55c 090bdce 4bfc55c f390488 4bfc55c f390488 4bfc55c f390488 4bfc55c f6fef17 4bfc55c f390488 f6fef17 2b24d04 f6fef17 2b24d04 f390488 64a5566 d85563e f6fef17 d85563e 090bdce f390488 f6fef17 f390488 4bfc55c 45d7b4b 4bfc55c 45d7b4b 4bfc55c 45d7b4b 4bfc55c d6debf6 4bfc55c b329a41 4bfc55c d6debf6 4bfc55c 91bd078 6fc0a4d e380a56 6fc0a4d 11ac7d8 a985384 34f85e7 4bfc55c 6fc0a4d 4bfc55c 6fc0a4d 5d5bc80 6fc0a4d fba3086 6fc0a4d 4435d63 6fc0a4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 |
import json
import warnings
from bokeh.models import DatetimeTicker, DatetimeTickFormatter
warnings.filterwarnings("ignore")
import io
import os
import time
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.simplefilter(action='ignore', category=RuntimeWarning)
import pandas as pd
import csv
import ast
from tqdm import tqdm
from operator import itemgetter
import numpy as np
import re
import datetime
import html
from joblib import Parallel, delayed
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
#plt.style.use('seaborn-paper')
import holoviews as hv
from holoviews import opts, dim
from bokeh.sampledata.les_mis import data
from bokeh.io import show
from bokeh.sampledata.les_mis import data
import panel as pn
import bokeh
from bokeh.resources import INLINE
from holoviews.operation.timeseries import rolling, rolling_outlier_std
hv.extension('bokeh')
from scipy.ndimage import gaussian_filter1d
from bokeh.models import Legend, LegendItem
import os
os.environ['MPLCONFIGDIR'] = '/tmp/matplotlib'
## LOAD DATASETS
data_folder = './data'
country_name_df = pd.read_csv(os.path.join(data_folder, 'country_name_map.tsv'), header=0, sep='\t', lineterminator='\n', low_memory=False)
country_name_map = dict(zip(country_name_df.Country_Code, country_name_df.Country_Name))
total_publications_time_indexed = pd.read_csv(os.path.join(data_folder, 'total_publications_time_indexed.tsv'), header=0, sep='\t', lineterminator='\n', low_memory=False)
country_publications_time_indexed = pd.read_csv(os.path.join(data_folder, 'country_publications_time_indexed.tsv'), header=0, sep='\t', lineterminator='\n', low_memory=False)
## AECO topic over time html file:
AECO_topics_over_time_file_path = '/assets/optimized_merged_AECO_topics_over_time_2D_gpt_labels.html'
AECO_topics_dendogram_file_path = '/assets/topic_hierarchy_optimal_params.htm'
AECO_topic_map_path = '/assets/document_datamap_ver2.html'
regions = ['eu', 'us', 'eu_us']
sorted_ent_type_freq_map_eu=dict()
sorted_ent_type_freq_map_us=dict()
sorted_ent_type_freq_map_eu_us=dict()
def read_top_ent_types():
reader = csv.reader(open(os.path.join(data_folder, 'sorted_ent_type_freq_map_eu.tsv'), 'r'))
for i,row in enumerate(reader):
if i < 20:
k, v = row
sorted_ent_type_freq_map_eu[k] = int(v)
del sorted_ent_type_freq_map_eu['Entity']
reader = csv.reader(open(os.path.join(data_folder, 'sorted_ent_type_freq_map_us.tsv'), 'r'))
for i, row in enumerate(reader):
if i < 20:
k, v = row
sorted_ent_type_freq_map_us[k] = int(v)
del sorted_ent_type_freq_map_us['Entity']
reader = csv.reader(open(os.path.join(data_folder, 'sorted_ent_type_freq_map_eu_us.tsv'), 'r'))
for i, row in enumerate(reader):
if i < 20:
k, v = row
sorted_ent_type_freq_map_eu_us[k] = int(v)
del sorted_ent_type_freq_map_eu_us['Entity']
read_top_ent_types()
top_type_filtered_eu = ['DBpedia:Country', 'DBpedia:Organisation', 'DBpedia:Company', 'DBpedia:Person', 'DBpedia:Disease', 'DBpedia:ChemicalSubstance', 'DBpedia:Drug', 'DBpedia:GovernmentAgency', 'DBpedia:City', 'DBpedia:MonoclonalAntibody']
top_type_filtered_us = ['DBpedia:Organisation', 'DBpedia:Company', 'DBpedia:Disease', 'DBpedia:ChemicalSubstance', 'DBpedia:Person', 'DBpedia:Drug', 'DBpedia:Country', 'DBpedia:Region', 'DBpedia:MonoclonalAntibody', 'DBpedia:City', 'DBpedia:Biomolecule']
top_type_filtered_eu_us = ['DBpedia:Organisation', 'DBpedia:Company', 'DBpedia:ChemicalSubstance', 'DBpedia:Drug', 'DBpedia:Country', 'DBpedia:Person', 'DBpedia:Disease', 'DBpedia:MonoclonalAntibody', 'DBpedia:GovernmentAgency', 'DBpedia:Biomolecule', 'DBpedia:Gene']
def read_top_ent_maps():
reader = csv.reader(open(os.path.join(data_folder, 'sorted_ent_freq_map_eu.tsv'), 'r'), delimiter='\t')
for row in reader:
k,v = row
lista = ast.literal_eval(v)
dizionario = dict()
for pair in lista:
dizionario[pair[0]]=pair[1]
dizionario = sorted(dizionario.items(), key=lambda x: x[1], reverse=True)
ent_freq_maps_eu[k]=dizionario
reader = csv.reader(open(os.path.join(data_folder, 'sorted_ent_freq_map_us.tsv'), 'r'), delimiter='\t')
for row in reader:
k, v = row
lista = ast.literal_eval(v)
dizionario = dict()
for pair in lista:
dizionario[pair[0]] = pair[1]
dizionario = sorted(dizionario.items(), key=lambda x: x[1], reverse=True)
ent_freq_maps_us[k] = dizionario
reader = csv.reader(open(os.path.join(data_folder, 'sorted_ent_freq_map_eu_us.tsv'), 'r'), delimiter='\t')
for row in reader:
k, v = row
lista = ast.literal_eval(v)
dizionario = dict()
for pair in lista:
dizionario[pair[0]] = pair[1]
dizionario = sorted(dizionario.items(), key=lambda x: x[1], reverse=True)
ent_freq_maps_eu_us[k] = dizionario
ent_freq_maps_eu = dict()
ent_freq_maps_us = dict()
ent_freq_maps_eu_us = dict()
read_top_ent_maps()
def read_type_filtered_triples():
for t in top_type_filtered_eu:
df = pd.read_csv(data_folder+'/filtered_rows/eu/'+t.replace(':','_')+'.tsv', sep=" ", header=0)
df.drop(columns=['Unnamed: 0'], inplace=True)
top_type_filtered_triples_eu[t]=df
for t in top_type_filtered_us:
df = pd.read_csv(data_folder+'/filtered_rows/us/'+t.replace(':','_')+'.tsv', sep=" ")
df.drop(columns=['Unnamed: 0'], inplace=True)
top_type_filtered_triples_us[t]=df
for t in top_type_filtered_eu_us:
df = pd.read_csv(data_folder+'/filtered_rows/eu_us/'+t.replace(':','_')+'.tsv', sep=" ")
df.drop(columns=['Unnamed: 0'], inplace=True)
top_type_filtered_triples_eu_us[t]=df
top_type_filtered_triples_eu = dict()
top_type_filtered_triples_us = dict()
top_type_filtered_triples_eu_us = dict()
read_type_filtered_triples()
grouping_filtered = pd.read_csv(os.path.join(data_folder, 'dna_relations.tsv'), sep=" ")
def load_topic2toptasks():
with open(os.path.join(data_folder+'/time_series','topic2toptasks.json'), "r", encoding="utf-8") as file:
mapping = json.load(file)
return mapping
def loadTaskMethodTimeSeries(topic,task):
task_method_ts = pd.read_csv(os.path.join(data_folder+'/time_series', f"""{topic}_{task}_time_series.csv"""),
header=0, sep=',', lineterminator='\n', low_memory=False)
task_method_ts.set_index(task_method_ts.columns[0], inplace=True)
return task_method_ts
def loadTaskTimeSeries(topic):
#cluster_{cluster_id}_TASK_time_series.csv
task_ts = pd.read_csv(os.path.join(data_folder+'/time_series', f"""cluster_{topic}_TASK_time_series.csv"""),
header=0, sep=',', lineterminator='\n', low_memory=False)
task_ts.set_index(task_ts.columns[0], inplace=True)
return task_ts
def loadMethodTimeSeries(topic):
method_ts = pd.read_csv(os.path.join(data_folder+'/time_series', f"""cluster_{topic}_METHOD_time_series.csv"""),
header=0, sep=',', lineterminator='\n', low_memory=False)
method_ts.set_index(method_ts.columns[0], inplace=True)
return method_ts
################################# CREATE CHARTS ############################
################################# CREATE CHARTS ############################
# Hook function to customize x-axis for Bokeh
def customize_x_axis_bokeh(plot, element):
bokeh_plot = plot.state
bokeh_plot.xaxis.formatter = DatetimeTickFormatter(months='%m%Y')
bokeh_plot.xaxis.ticker.desired_num_ticks = 12
def create_publication_curve_chart():
country_name_df = pd.read_csv(os.path.join(data_folder, 'country_name_map.tsv'), header=0, sep='\t', lineterminator='\n', low_memory=False)
country_name_map = dict(zip(country_name_df.Country_Code, country_name_df.Country_Name))
#country_name_map
total_publications_time_indexed = pd.read_csv(os.path.join(data_folder, 'total_publications_time_indexed.tsv'), header=0, sep='\t', lineterminator='\n', low_memory=False)
total_publications_time_indexed['month_bin'] = pd.to_datetime(total_publications_time_indexed['month_bin'])
country_publications_time_indexed = pd.read_csv(os.path.join(data_folder, 'country_publications_time_indexed.tsv'), header=0, sep='\t', lineterminator='\n', low_memory=False)
total_publications_time_indexed.id = np.log1p(total_publications_time_indexed.id)
country_publications_time_indexed = country_publications_time_indexed.applymap(lambda x: np.log1p(x) if np.issubdtype(type(x), np.number) else x)
curve_total = hv.Curve((total_publications_time_indexed.month_bin, total_publications_time_indexed.id), 'Time', 'Publication Counts (log)',label='Total')
#Overlay the line plots
overlay = curve_total
curve_countries = []
for country in country_name_map.keys():
overlay = overlay * hv.Curve((total_publications_time_indexed.month_bin, country_publications_time_indexed[country]), label=country_name_map[country])
overlay.opts(show_legend=True,legend_position='right', width=1400, height=900, hooks=[customize_x_axis_bokeh])
return overlay
macro_topics_mapping = {"Energy Efficiency and Thermal Comfort in Building Environments":0,
"Indoor Air Quality and Sustainable Air Conditioning Systems":1,
"Urban Development Strategies and Sustainable City Planning":2,
"Enhancing Child-Friendly Urban Spaces Through Design":3,
"Smart city development and urban data management":4,
"Urban Resilience and Green Infrastructure in Climate Change Planning":5,
"Architectural Integration of Solar Photovoltaic Systems in Buildings":6,
"Preservation and Evolution of Traditional Architecture in Modern Contexts":7,
"Sustainable Building Construction and Design with Environmental Assessment":8,
"Landscape Planning and Design Theory":9,
"Urban Sound Environment Research in Architectural Design":10,
"Sustainable Construction Materials and Technologies":11,
"Utilizing BIM in Construction and Building Information Modeling Industry":12,
"Urban Agriculture and Sustainable Food Systems":13,
"Sustainable Bridge Design and Construction":14,
"Investigation of Cavity Dynamics and Heat Transfer in Various Flow Scenarios":15}
macro_topics_active_subset = ["Energy Efficiency and Thermal Comfort in Building Environments","Architectural Integration of Solar Photovoltaic Systems in Buildings","Utilizing BIM in Construction and Building Information Modeling Industry"]
def load_institute_network(topic, **kwargs):
if topic=='Energy Efficiency and Thermal Comfort in Building Environments':
html = """<iframe src="https://tinyurl.com/2d4gl4tl" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Indoor Air Quality and Sustainable Air Conditioning Systems':
html = """<iframe src="https://app.vosviewer.com/?json=https%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D1rqPx3X_9Hnv9mTq2bMCbWWh5VIOw9CRh" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Urban Development Strategies and Sustainable City Planning':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Enhancing Child-Friendly Urban Spaces Through Design':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Smart city development and urban data management':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Urban Resilience and Green Infrastructure in Climate Change Planning':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Architectural Integration of Solar Photovoltaic Systems in Buildings':
html = """<iframe src="https://tinyurl.com/2a2ha2r8" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Preservation and Evolution of Traditional Architecture in Modern Contexts':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Sustainable Building Construction and Design with Environmental Assessment':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Landscape Planning and Design Theory':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Urban Sound Environment Research in Architectural Design':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Sustainable Construction Materials and Technologies':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Utilizing BIM in Construction and Building Information Modeling Industry':
html = """<iframe src="https://app.vosviewer.com/?json=https%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D1V-Cto19dxV_GR3MtNP6Yk642CnTQkjEK" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Urban Agriculture and Sustainable Food Systems':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Sustainable Bridge Design and Construction':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Investigation of Cavity Dynamics and Heat Transfer in Various Flow Scenarios':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
def load_country_network(topic, **kwargs):
if topic=='Energy Efficiency and Thermal Comfort in Building Environments':
html = """<iframe src="https://tinyurl.com/2b7sqbdc" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Indoor Air Quality and Sustainable Air Conditioning Systems':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Urban Development Strategies and Sustainable City Planning':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Enhancing Child-Friendly Urban Spaces Through Design':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Smart city development and urban data management':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Urban Resilience and Green Infrastructure in Climate Change Planning':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Architectural Integration of Solar Photovoltaic Systems in Buildings':
html = """<iframe src="https://tinyurl.com/29mkxzep" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Preservation and Evolution of Traditional Architecture in Modern Contexts':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Sustainable Building Construction and Design with Environmental Assessment':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Landscape Planning and Design Theory':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Urban Sound Environment Research in Architectural Design':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Sustainable Construction Materials and Technologies':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Utilizing BIM in Construction and Building Information Modeling Industry':
html = """<iframe src="https://tinyurl.com/2ynebkcr" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Urban Agriculture and Sustainable Food Systems':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Sustainable Bridge Design and Construction':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Investigation of Cavity Dynamics and Heat Transfer in Various Flow Scenarios':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
def create_overlay_plot(subject_df):
overlay = hv.Overlay()
for obj_column in subject_df.columns:
overlay *= hv.Curve((subject_df.index, subject_df[obj_column]), 'Time', 'Frequency', label=obj_column)
overlay.opts(
show_legend=True,
legend_position='right',
width=1400,
height=900
)
return overlay
def hook1(plot, element):
plot.handles['xaxis'].axis_label_text_color = 'black'
plot.handles['yaxis'].axis_label_text_color = 'black'
plot.handles['xaxis'].axis_label_text_alpha = 1.0
plot.handles['yaxis'].axis_label_text_alpha = 1.0
plot.handles['xaxis'].axis_line_alpha = 1.0
plot.handles['yaxis'].axis_line_alpha = 1.0
'''
def legend_hook(plot, element):
p = plot.state
if p.legend:
legend = p.legend[0]
legend.orientation = 'horizontal'
legend.location = 'center'
legend.background_fill_color = 'white'
legend.border_line_color = 'black'
legend.label_text_font_size = '12pt'
legend.label_text_color = 'black'
legend.spacing = 10
legend.label_standoff = 5,
legend.margin = 20
# Distribute legend items in multiple columns
legend.columns = 8 # ⚠ This sets 8 columns for Bokeh >= 2.4
# Move legend below the plot
p.add_layout(legend, 'below')
'''
def create_overlay_plots(df):
def move_legend_below(plot, element):
p = plot.state
if p.legend:
legend = p.legend[0]
legend.orientation = 'horizontal'
legend.location = 'center' # center of the below layout, not plot area
legend.ncols = 4
legend.background_fill_color = 'white'
legend.border_line_color = 'black'
legend.label_text_font_size = '20pt'
legend.label_text_color = 'black'
legend.spacing = 10
legend.margin = 10
legend.label_standoff = 5
p.add_layout(legend, 'below')
line_styles = ['solid', 'dashed', 'dashdot', 'dotted']
curves = []
max_y = 0
for i,obj_column in enumerate(df.columns):
linestyle = line_styles[i % len(line_styles)]
curve = hv.Curve((df.index, np.log1p(df[obj_column])), 'Time', 'Occurrence Ratio', label=obj_column).opts(show_legend=True, line_dash=linestyle,fontsize={
'xlabel': 18,
'ylabel': 18,
'xticks': 18,
'yticks': 18,
})
curves.append(curve)
overlay = hv.Overlay(curves).opts(
opts.Overlay(bgcolor='white',
#padding=-0.1,
show_legend=True,
#legend_position='top_left',
#ylim=(0, max_y + 0.18*max_y),
width=1850,
height=900,
#padding=(0.2, 0.2),
hooks=[move_legend_below,hook1,lambda p, _: p.state.update(border_fill_color='white')],
),
opts.Curve(
show_grid=True,
line_width=2,
)
)
return overlay
############################# WIDGETS & CALLBACK ###########################################
def filter_data0(df, min_value):
filtered_df = df[df['value'] >= min_value]
return filtered_df
def plot_chord0_new(df,min_value):
filtered_df = filter_data0(df, min_value)
# Create a Holoviews Dataset for nodes
nodes = hv.Dataset(filtered_df, 'index')
nodes.data.head()
chord = hv.Chord(filtered_df, ['source', 'target'], ['value'])
return chord.opts(opts.Chord(cmap='Category20', edge_cmap='Category20', label_text_color="white", node_color = hv.dim('index').str(), edge_color = hv.dim('source').str(), labels = 'index', tools=['hover'], width=800, height=800))
def retrieveRegionTypes(region):
if region == 'eu':
return top_type_filtered_eu
elif region == 'us':
return top_type_filtered_us
elif region == 'eu_us':
return top_type_filtered_eu_us
def filter_region(region):
if region == 'eu':
region_grouping = grouping_filtered[grouping_filtered['region'] == 'eu']
elif region == 'us':
region_grouping = grouping_filtered[grouping_filtered['region'] == 'us']
elif region == 'eu_us':
region_grouping = grouping_filtered[grouping_filtered['region'] == 'eu_us']
#print(len(region_grouping))
# Define range for minimum value slider
min_value_range = region_grouping['value'].unique()
min_value_range.sort()
# Define HoloMap with minimum value and attribute as key dimensions
holomap = hv.HoloMap({min_value: plot_chord0_new(region_grouping, min_value)
for min_value in min_value_range},
kdims=['Show triples with support greater than']
)
return holomap
# Define a function to generate Entity List RadioButtonGroup based on Region selection
def generate_radio_buttons(value):
if value == 'eu':
return pn.widgets.RadioButtonGroup(options=retrieveRegionTypes(value), value='DBpedia:Company', name='eu', orientation='vertical')
elif value == 'us':
return pn.widgets.RadioButtonGroup(options=retrieveRegionTypes(value), value='DBpedia:Disease', name='us', orientation='vertical')
elif value == 'eu_us':
return pn.widgets.RadioButtonGroup(options=retrieveRegionTypes(value), value='DBpedia:Person', name='eu_us', orientation='vertical')
# https://tabler-icons.io/
button0 = pn.widgets.Button(name="Introduction", button_type="warning", icon="file-info", styles={"width": "100%"})
button1 = pn.widgets.Button(name="Publication Trends", button_type="warning", icon="chart-histogram", styles={"width": "100%"})
button2 = pn.widgets.Button(name="Topic Map", button_type="warning", icon="chart-dots-3", styles={"width": "100%"})
button3 = pn.widgets.Button(name="AECO Macro Topic Hierarchy", button_type="warning", icon="chart-dots-3", styles={"width": "100%"})
button4 = pn.widgets.Button(name="AECO Macro Topics Trends", button_type="warning", icon="chart-histogram", styles={"width": "100%"})
button5 = pn.widgets.Button(name="Research Collaboration Networks: Institutes", button_type="warning", icon="chart-dots-3", styles={"width": "100%"})
button6 = pn.widgets.Button(name="Research Collaboration Networks: Countries", button_type="warning", icon="chart-dots-3", styles={"width": "100%"})
button7 = pn.widgets.Button(name="Research Tasks and Methods Trends", button_type="warning", icon="chart-dots-3", styles={"width": "100%"})
region1 = pn.widgets.RadioButtonGroup(name='### Select News Region', options=regions)
macro_topics_button = pn.widgets.Select(name='Select Macro Topic', value='Energy Efficiency and Thermal Comfort in Building Environments', options=macro_topics_active_subset)
# Initial RadioButtonGroup
radio_buttons_regions = pn.widgets.RadioButtonGroup(options=regions,value='eu',name='Select region')
# Generate initial dynamic RadioButtonGroup
radio_buttons_types = generate_radio_buttons(radio_buttons_regions.value)
# Define a callback function to update the panel dynamically
def update_radio_group(event):
#print(event.new)
#print(retrieveRegionTypes(event.new))
radio_buttons_types.options = retrieveRegionTypes(event.new)
# bind the function to the widget(s)
# Bind the selected value of the first RadioButtonGroup to update the second RadioButtonGroup
radio_buttons_regions.param.watch(update_radio_group, 'value')
# Define the callback function to update the HoloMap
def update_holomap(event):
initial_holomap.object = filter_region(event.new)
region_radio_button = pn.widgets.RadioButtonGroup(options=regions, value='eu', name='Select Region')
# Create the initial HoloMap
initial_holomap = filter_region(region_radio_button.value)
# Bind the callback function to the value change event of the RadioButton widget
region_radio_button.param.watch(update_holomap, 'value')
def show_page(page_key):
main_area.clear()
main_area.append(mapping[page_key])
button0.on_click(lambda event: show_page("Page0"))
button1.on_click(lambda event: show_page("Page1"))
button2.on_click(lambda event: show_page("Page2"))
button3.on_click(lambda event: show_page("Page3"))
button4.on_click(lambda event: show_page("Page4"))
button5.on_click(lambda event: show_page("Page5"))
button6.on_click(lambda event: show_page("Page6"))
button7.on_click(lambda event: show_page("Page7"))
### CREATE PAGE LAYOUTS
def CreatePage0():
return pn.Column(pn.pane.Markdown("""
## Introduction
This is a dashboard for a Data Analytics project regarding research publications in the AECO domain. The source data consists of around 267k English-language research papers gathered from the openalex.org graph database, covering a timeframe from 2011 through early 2024.
---------------------------
## Publication Trends
In the "Publication Trends" panel we show monthly time series of the total number of publications and the number of publications per country (both in log scale), for the top 20 countries by number of publications in the dataset.
## Topic Map
In the "Topic Map" panel we show a UMAP reduced 2-dimensional visualization of the optimized 52 topic clusters of AECO research papers, embedded using Sentence Transformer model, with the descriptive labels overlayed on the clusters being generated by LLama 2 Large Language Model. Each point in the space represent a paper from the dataset.
Hovering over it has the paper title popping up, while clicking on it redirects to the corresponding OpenAlex paper entry page.
## AECO Macro Topic Hierarchy
The "AECO Macro Topic Hierarchy" panel allows to explore the dendrogram representation of the optimized clustering, with the leaves of the tree representing the 51 clusters, the intermediate nodes representing merged clusters and the height of the merging (distance from the leaves) indicating topic
similarity as based on the cosine distance matrix between topic embeddings.
## AECO Macro Topic Trends
The "AECO Macro Topic Trends" panel shows the evolution over time of the 16 AECO macro topics by plotting the semi-annual time series of the absolute numbers of publications per topic.
## Research Collaboration Networks: Institutes
The "Research Collaboration Networks: Institutes" panel contains VOSViewer-generated network representations of the research institutions co-authorship connections, for each of the 16 macro clusters. By selecting a macro-cluster from by the drop-down menu, a graph is loaded whose nodes represent research institutions, edges represent co-authorships relations (with edge thickness being proportional to the frequency of the relations) and the color code clustering highlights the partition of the graph in highly interconnected node groups.
Open the VOSViewer left panel to customize the visualization and/or search for a target institution in the graph.
## Research Collaboration Networks: Countries
The "Research Collaboration Networks: Countries" panel contains VOSViewer-generated network representations of the authors/institutions' country co-authorship connections, for each of the 16 macro clusters. By selecting a macro-cluster from by the drop-down menu, a graph is loaded whose nodes represent authors/institutions' countries, edges represent co-authorships relations (with edge thickness being proportional to the frequency of the relations) and the color code clustering highlights the partition of the graph in highly interconnected node groups.
Open the VOSViewer left panel to customize the visualization and/or search for a target country in the graph.
## Research Tasks and Methods Trend
The "Research Tasks and Methods Trend" shows the evolution over time of the most prominent TASK and METHOD entities extracted from research papers for each of the 16 AECO macro topics. It plots annual time series of the occurrence ratio for each triple target entity (Task or Method) to the number of papers of the macro topic.
""", width=1000), align="center")
def CreatePage1():
return pn.Column(
pn.pane.Markdown("## Publication Trends "),
create_publication_curve_chart(),
align="center",
)
def CreatePage2():
# Load the HTML content from the local file
#with open(AECO_topics_over_time_file_path, 'r', encoding='utf-8') as file:
# html_content = file.read()
# Use an iframe to load the local HTML file
iframe_html = f'<iframe src="{AECO_topic_map_path}" width="1400px" height="1200px"></iframe>'
# Create an HTML pane to render the content
html_pane = pn.pane.HTML(iframe_html , sizing_mode='stretch_both')
return pn.Column(pn.pane.Markdown(" ## AECO Topic Map "), html_pane, align="center")
def CreatePage3():
# Load the HTML content from the local file
#with open(AECO_topics_over_time_file_path, 'r', encoding='utf-8') as file:
# html_content = file.read()
# Use an iframe to load the local HTML file
iframe_html = f'<iframe src="{AECO_topics_dendogram_file_path}" width="1400px" height="1200px"></iframe>'
# Create an HTML pane to render the content
html_pane = pn.pane.HTML(iframe_html , sizing_mode='stretch_both')
return pn.Column(pn.pane.Markdown(" ## AECO Macro Topics Dendogram "), html_pane, align="center")
def CreatePage4():
# Load the HTML content from the local file
#with open(AECO_topics_over_time_file_path, 'r', encoding='utf-8') as file:
# html_content = file.read()
# Use an iframe to load the local HTML file
iframe_html = f'<iframe src="{AECO_topics_over_time_file_path}" width="1400px" height="1200px"></iframe>'
# Create an HTML pane to render the content
html_pane = pn.pane.HTML(iframe_html , sizing_mode='stretch_both')
return pn.Column(pn.pane.Markdown(" ## AECO Macro Topics "), html_pane, align="center")
def CreatePage5():
return pn.Column(
macro_topics_button,
pn.bind(load_institute_network, macro_topics_button),
align="center",
)
def CreatePage6():
return pn.Column(
macro_topics_button,
pn.bind(load_country_network, macro_topics_button),
align="center",
)
def CreatePage7():
return pn.Column(
macro_topics_button,
pn.bind(load_Task_Method_trends, macro_topics_button),
align="center",
)
def load_Task_Method_trends(topic, **kwargs):
task_data = dict()
# Check if macro_topics_mapping exists
if topic not in macro_topics_mapping:
raise ValueError(f"Topic '{topic}' not found in macro_topics_mapping")
macro_topic_str = str(macro_topics_mapping[topic])
# Create Panel UI with dropdown selection
dropdown = pn.widgets.Select(
name="Select:",
options=["TASK","METHOD"]
)
#load the tasks and methods timeseries dataframe for the selected topic
task_ts_df = loadTaskTimeSeries(macro_topic_str)
method_ts_df = loadMethodTimeSeries(macro_topic_str)
# @pn.depends(dropdown.param.value)
def load_overlays(value):
if value == "TASK":
return create_overlay_plots(task_ts_df)
elif value == "METHOD":
return create_overlay_plots(method_ts_df)
return pn.Column(
dropdown,
pn.bind(load_overlays, dropdown),
align="center"
)
def load_Task_Method_triple_trends(topic, **kwargs):
task_data = dict()
# Check if macro_topics_mapping exists
if topic not in macro_topics_mapping:
raise ValueError(f"Topic '{topic}' not found in macro_topics_mapping")
macro_topic_str = str(macro_topics_mapping[topic])
topic2toptasks = load_topic2toptasks()
#load the task_timeseries dataframe for each of the task mapped from the selected topic in the dict topic2toptasks
for task in topic2toptasks.get(macro_topic_str, []):
task_data[task] = loadTaskMethodTimeSeries(macro_topic_str, task)
# Create Panel UI with dropdown selection
task_dropdown = pn.widgets.Select(
name="Select TASK",
options=[key for key in task_data.keys()] if task_data else ["No available tasks"]
)
#@pn.depends(task_dropdown.param.value)
def load_task_overlays(task):
if task not in task_data:
return hv.Text(0.5, 0.5, "No data available", halign="center")
else:
task_method_df = task_data.get(task)
return create_overlay_plot(task_method_df)
return pn.Column(
task_dropdown,
pn.bind(load_task_overlays, task_dropdown)
)
mapping = {
"Page0": CreatePage0(),
"Page1": CreatePage1(),
"Page2": CreatePage2(),
"Page3": CreatePage3(),
"Page4": CreatePage4(),
"Page5": CreatePage5(),
"Page6": CreatePage6(),
"Page7": CreatePage7()
}
#################### SIDEBAR LAYOUT ##########################
sidebar = pn.Column(pn.pane.Markdown("## Panels"),button0,button1,button2,button3,button4,button5,button6,button7,
#button5,
#button6,
styles={"width": "100%", "padding": "15px"})
#################### MAIN AREA LAYOUT ##########################
main_area = pn.Column(mapping["Page0"], styles={"width":"100%"})
###################### APP LAYOUT ##############################
template = pn.template.BootstrapTemplate(
title=" AECO Tech Dashboard",
sidebar=[sidebar],
main=[main_area],
header_background="black",
#site="Charting the Landscape of AECO Research",
theme=pn.template.DarkTheme,
sidebar_width=330, ## Default is 330
busy_indicator=pn.indicators.BooleanStatus(value=True),
)
### DEPLOY APP
# Serve the Panel app
template.servable() |