Spaces:
Sleeping
Sleeping
File size: 20,218 Bytes
4435d63 3121ae1 4435d63 91bd078 4435d63 91bd078 4435d63 91bd078 4435d63 91bd078 4435d63 aac4044 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
import warnings
warnings.filterwarnings("ignore")
import io
import os
import time
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.simplefilter(action='ignore', category=RuntimeWarning)
import pandas as pd
import csv
import ast
from tqdm import tqdm
from operator import itemgetter
import numpy as np
import re
import datetime
import html
from joblib import Parallel, delayed
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
#plt.style.use('seaborn-paper')
import holoviews as hv
from holoviews import opts, dim
from bokeh.sampledata.les_mis import data
from bokeh.io import show
from bokeh.sampledata.les_mis import data
import panel as pn
import bokeh
from bokeh.resources import INLINE
from holoviews.operation.timeseries import rolling, rolling_outlier_std
hv.extension('bokeh')
## LOAD DATASETS
dna_folder = './data'
#### full data unfiltered:
dna_articles_unfiltered_eu_time_indexed_resampled = pd.read_csv(os.path.join(dna_folder, 'dna_articles_unfiltered_eu_time_indexed_resampled.tsv'),sep='\t',header=0)
dna_articles_unfiltered_us_time_indexed_resampled = pd.read_csv(os.path.join(dna_folder, 'dna_articles_unfiltered_us_time_indexed_resampled.tsv'),sep='\t',header=0)
dna_articles_unfiltered_eu_us_time_indexed_resampled = pd.read_csv(os.path.join(dna_folder, 'dna_articles_unfiltered_eu_us_time_indexed_resampled.tsv'),sep='\t',header=0)
#### classifier filtered articles:
dh_ration_df_eu = pd.read_csv(os.path.join(dna_folder, 'dh_ration_df_eu.tsv'),sep='\t',header=0)
dh_ration_df_us = pd.read_csv(os.path.join(dna_folder, 'dh_ration_df_us.tsv'),sep='\t',header=0)
dh_ration_df_eu_us = pd.read_csv(os.path.join(dna_folder, 'dh_ration_df_eu_us.tsv'),sep='\t',header=0)
regions = ['eu', 'us', 'eu_us']
sorted_ent_type_freq_map_eu=dict()
sorted_ent_type_freq_map_us=dict()
sorted_ent_type_freq_map_eu_us=dict()
def read_top_ent_types():
reader = csv.reader(open(os.path.join(dna_folder, 'sorted_ent_type_freq_map_eu.tsv'), 'r'))
for i,row in enumerate(reader):
if i < 20:
k, v = row
sorted_ent_type_freq_map_eu[k] = int(v)
del sorted_ent_type_freq_map_eu['Entity']
reader = csv.reader(open(os.path.join(dna_folder, 'sorted_ent_type_freq_map_us.tsv'), 'r'))
for i, row in enumerate(reader):
if i < 20:
k, v = row
sorted_ent_type_freq_map_us[k] = int(v)
del sorted_ent_type_freq_map_us['Entity']
reader = csv.reader(open(os.path.join(dna_folder, 'sorted_ent_type_freq_map_eu_us.tsv'), 'r'))
for i, row in enumerate(reader):
if i < 20:
k, v = row
sorted_ent_type_freq_map_eu_us[k] = int(v)
del sorted_ent_type_freq_map_eu_us['Entity']
read_top_ent_types()
top_type_filtered_eu = ['DBpedia:Country', 'DBpedia:Organisation', 'DBpedia:Company', 'DBpedia:Person', 'DBpedia:Disease', 'DBpedia:ChemicalSubstance', 'DBpedia:Drug', 'DBpedia:GovernmentAgency', 'DBpedia:City', 'DBpedia:MonoclonalAntibody']
top_type_filtered_us = ['DBpedia:Organisation', 'DBpedia:Company', 'DBpedia:Disease', 'DBpedia:ChemicalSubstance', 'DBpedia:Person', 'DBpedia:Drug', 'DBpedia:Country', 'DBpedia:Region', 'DBpedia:MonoclonalAntibody', 'DBpedia:City', 'DBpedia:Biomolecule']
top_type_filtered_eu_us = ['DBpedia:Organisation', 'DBpedia:Company', 'DBpedia:ChemicalSubstance', 'DBpedia:Drug', 'DBpedia:Country', 'DBpedia:Person', 'DBpedia:Disease', 'DBpedia:MonoclonalAntibody', 'DBpedia:GovernmentAgency', 'DBpedia:Biomolecule', 'DBpedia:Gene']
dna_healthtech_articles_eu_time_indexed_resampled=pd.read_csv(os.path.join(dna_folder, 'dna_healthtech_articles_eu_time_indexed_resampled.tsv'),sep='\t',header=0)
dna_healthtech_articles_us_time_indexed_resampled=pd.read_csv(os.path.join(dna_folder, 'dna_healthtech_articles_us_time_indexed_resampled.tsv'),sep='\t',header=0)
dna_healthtech_articles_eu_us_time_indexed_resampled=pd.read_csv(os.path.join(dna_folder, 'dna_healthtech_articles_eu_us_time_indexed_resampled.tsv'),sep='\t',header=0)
def read_top_ent_maps():
reader = csv.reader(open(os.path.join(dna_folder, 'sorted_ent_freq_map_eu.tsv'), 'r'), delimiter='\t')
for row in reader:
k,v = row
lista = ast.literal_eval(v)
dizionario = dict()
for pair in lista:
dizionario[pair[0]]=pair[1]
dizionario = sorted(dizionario.items(), key=lambda x: x[1], reverse=True)
ent_freq_maps_eu[k]=dizionario
reader = csv.reader(open(os.path.join(dna_folder, 'sorted_ent_freq_map_us.tsv'), 'r'), delimiter='\t')
for row in reader:
k, v = row
lista = ast.literal_eval(v)
dizionario = dict()
for pair in lista:
dizionario[pair[0]] = pair[1]
dizionario = sorted(dizionario.items(), key=lambda x: x[1], reverse=True)
ent_freq_maps_us[k] = dizionario
reader = csv.reader(open(os.path.join(dna_folder, 'sorted_ent_freq_map_eu_us.tsv'), 'r'), delimiter='\t')
for row in reader:
k, v = row
lista = ast.literal_eval(v)
dizionario = dict()
for pair in lista:
dizionario[pair[0]] = pair[1]
dizionario = sorted(dizionario.items(), key=lambda x: x[1], reverse=True)
ent_freq_maps_eu_us[k] = dizionario
ent_freq_maps_eu = dict()
ent_freq_maps_us = dict()
ent_freq_maps_eu_us = dict()
read_top_ent_maps()
def read_type_filtered_triples():
for t in top_type_filtered_eu:
df = pd.read_csv(dna_folder+'/filtered_rows/eu/'+t.replace(':','_')+'.tsv', sep=" ", header=0)
df.drop(columns=['Unnamed: 0'], inplace=True)
top_type_filtered_triples_eu[t]=df
for t in top_type_filtered_us:
df = pd.read_csv(dna_folder+'/filtered_rows/us/'+t.replace(':','_')+'.tsv', sep=" ")
df.drop(columns=['Unnamed: 0'], inplace=True)
top_type_filtered_triples_us[t]=df
for t in top_type_filtered_eu_us:
df = pd.read_csv(dna_folder+'/filtered_rows/eu_us/'+t.replace(':','_')+'.tsv', sep=" ")
df.drop(columns=['Unnamed: 0'], inplace=True)
top_type_filtered_triples_eu_us[t]=df
top_type_filtered_triples_eu = dict()
top_type_filtered_triples_us = dict()
top_type_filtered_triples_eu_us = dict()
read_type_filtered_triples()
grouping_filtered = pd.read_csv(os.path.join(dna_folder, 'dna_relations.tsv'), sep=" ")
################################# CREATE CHARTS ############################
def create_curve_chart():
# Create the 3 line plots
curve_eu = hv.Curve((dh_ration_df_eu.index, dh_ration_df_eu.ids/dna_articles_unfiltered_eu_time_indexed_resampled.ids), 'Time', 'Digital Health News Ratio',label='EU')
curve_us = hv.Curve((dh_ration_df_us.index, dh_ration_df_us.ids/dna_articles_unfiltered_us_time_indexed_resampled.ids),'Time', 'Digital Health News Ratio', label='US')
curve_eu_us = hv.Curve((dh_ration_df_eu_us.index, dh_ration_df_eu_us.ids/dna_articles_unfiltered_eu_us_time_indexed_resampled.ids),'Time', 'Digital Health News Ratio', label='EU-US')
#Overlay the line plots
overlay = curve_eu * curve_us * curve_eu_us
overlay.opts(show_legend = True, legend_position='top_left', width=1200, height=600)
return overlay
def create_bar_charts(region, **kwargs):
if region=='eu':
sliced = sorted_ent_type_freq_map_eu
return hv.Bars(sliced, hv.Dimension('Entity Types'), 'Frequency').opts( framewise=True, xrotation=45,width=1200, height=600)
elif region=='us':
sliced = sorted_ent_type_freq_map_us
return hv.Bars(sliced, hv.Dimension('Entity Types'), 'Frequency').opts(framewise=True, xrotation=45,width=1200, height=600)
elif region=='eu_us':
sliced = sorted_ent_type_freq_map_eu_us
return hv.Bars(sliced, hv.Dimension('Entity Types'), 'Frequency').opts(framewise=True, xrotation=45,width=1200, height=600)
# Define a function to generate Curve based on selected values
def generate_entity_curves(region_value, type_value, **kwargs):
if region_value=='eu':
top20Ents = ent_freq_maps_eu[type_value]
curveList = []
for ent in top20Ents:
entityTriples = top_type_filtered_triples_eu[type_value][(top_type_filtered_triples_eu[type_value]['subjEntityLinks']==ent[0]) | (top_type_filtered_triples_eu[type_value]['objEntityLinks']==ent[0])]
entityTriples_time_indexed = entityTriples.set_index(pd.DatetimeIndex(entityTriples['timestamp']), inplace=False)
del entityTriples_time_indexed['timestamp']
entityTriples_time_indexed_resampled = entityTriples_time_indexed.resample("Y").count()
#print(entityTriples_time_indexed_resampled)
entityTriples_time_indexed_resampled = entityTriples_time_indexed_resampled.reindex(dna_healthtech_articles_eu_time_indexed_resampled.index, fill_value=0)
curve = hv.Curve((entityTriples_time_indexed_resampled.index, (entityTriples_time_indexed_resampled['doc_id']/dna_healthtech_articles_eu_time_indexed_resampled['ids'])), 'Time', 'Key Entity Occurrence', label=ent[0])
curve.opts(autorange='y')
#curve.opts(logy=True)
curveList.append(curve)
overlay = hv.Overlay(curveList)
overlay.opts(legend_muted=False, legend_cols=4, show_legend = True, legend_position='top_left', fontsize={'legend':13},width=1200, height=800)
return overlay
elif region_value=='us':
top20Ents = ent_freq_maps_us[type_value]
curveList = []
for ent in top20Ents:
entityTriples = top_type_filtered_triples_us[type_value][(top_type_filtered_triples_us[type_value]['subjEntityLinks']==ent[0]) | (top_type_filtered_triples_us[type_value]['objEntityLinks']==ent[0])]
entityTriples_time_indexed = entityTriples.set_index(pd.DatetimeIndex(entityTriples['timestamp']), inplace=False)
del entityTriples_time_indexed['timestamp']
entityTriples_time_indexed_resampled = entityTriples_time_indexed_resampled.reindex(dna_healthtech_articles_us_time_indexed_resampled.index, fill_value=0)
curve = hv.Curve((entityTriples_time_indexed_resampled.index, (entityTriples_time_indexed_resampled['doc_id']/dna_healthtech_articles_us_time_indexed_resampled['ids'])), 'Time', 'Key Entity Occurrence', label=ent[0])
curve.opts(autorange='y')
curveList.append(curve)
overlay = hv.Overlay(curveList)
overlay.opts(legend_muted=False, legend_cols=4, show_legend = True, legend_position='top_left', fontsize={'legend':13},width=1200, height=800)
return overlay
elif region_value=='eu_us':
top20Ents = ent_freq_maps_eu_us[type_value]
curveList = []
for ent in top20Ents:
entityTriples = top_type_filtered_triples_eu_us[type_value][(top_type_filtered_triples_eu_us[type_value]['subjEntityLinks']==ent[0]) | (top_type_filtered_triples_eu_us[type_value]['objEntityLinks']==ent[0])]
entityTriples_time_indexed = entityTriples.set_index(pd.DatetimeIndex(entityTriples['timestamp']), inplace=False)
del entityTriples_time_indexed['timestamp']
entityTriples_time_indexed_resampled = entityTriples_time_indexed_resampled.reindex(dna_healthtech_articles_eu_us_time_indexed_resampled.index, fill_value=0)
curve = hv.Curve((entityTriples_time_indexed_resampled.index, (entityTriples_time_indexed_resampled['doc_id']/dna_healthtech_articles_eu_us_time_indexed_resampled['ids'])), 'Time', 'Key Entity Occurrence', label=ent[0])
curve.opts(autorange='y')
curveList.append(curve)
overlay = hv.Overlay(curveList)
overlay.opts(legend_muted=False, legend_cols=4, show_legend = True, legend_position='top_left', fontsize={'legend':13},width=1200, height=800)
return overlay
############################# WIDGETS & CALLBACK ###########################################
def filter_data0(df, min_value):
filtered_df = df[df['value'] >= min_value]
return filtered_df
def plot_chord0_new(df,min_value):
filtered_df = filter_data0(df, min_value)
# Create a Holoviews Dataset for nodes
nodes = hv.Dataset(filtered_df, 'index')
nodes.data.head()
chord = hv.Chord(filtered_df, ['source', 'target'], ['value'])
return chord.opts(opts.Chord(cmap='Category20', edge_cmap='Category20', label_text_color="white", node_color = hv.dim('index').str(), edge_color = hv.dim('source').str(), labels = 'index', tools=['hover'], width=800, height=800))
def retrieveRegionTypes(region):
if region == 'eu':
return top_type_filtered_eu
elif region == 'us':
return top_type_filtered_us
elif region == 'eu_us':
return top_type_filtered_eu_us
def filter_region(region):
if region == 'eu':
region_grouping = grouping_filtered[grouping_filtered['region'] == 'eu']
elif region == 'us':
region_grouping = grouping_filtered[grouping_filtered['region'] == 'us']
elif region == 'eu_us':
region_grouping = grouping_filtered[grouping_filtered['region'] == 'eu_us']
#print(len(region_grouping))
# Define range for minimum value slider
min_value_range = region_grouping['value'].unique()
min_value_range.sort()
# Define HoloMap with minimum value and attribute as key dimensions
holomap = hv.HoloMap({min_value: plot_chord0_new(region_grouping, min_value)
for min_value in min_value_range},
kdims=['Show triples with support greater than']
)
return holomap
# Define a function to generate Entity List RadioButtonGroup based on Region selection
def generate_radio_buttons(value):
if value == 'eu':
return pn.widgets.RadioButtonGroup(options=retrieveRegionTypes(value), value='DBpedia:Company', name='eu', orientation='vertical')
elif value == 'us':
return pn.widgets.RadioButtonGroup(options=retrieveRegionTypes(value), value='DBpedia:Disease', name='us', orientation='vertical')
elif value == 'eu_us':
return pn.widgets.RadioButtonGroup(options=retrieveRegionTypes(value), value='DBpedia:Person', name='eu_us', orientation='vertical')
# https://tabler-icons.io/
button1 = pn.widgets.Button(name="Introduction", button_type="warning", icon="file-info", styles={"width": "100%"})
button2 = pn.widgets.Button(name="Health Tech News Ratio", button_type="warning", icon="chart-histogram", styles={"width": "100%"})
button3 = pn.widgets.Button(name="Top Entity Types", button_type="warning", icon="chart-bar", styles={"width": "100%"})
button4 = pn.widgets.Button(name="Top Key Entities", button_type="warning", icon="chart-dots-filled", styles={"width": "100%"})
button5 = pn.widgets.Button(name="Entity Chord Diagrams", button_type="warning", icon="chart-dots-filled", styles={"width": "100%"})
region1 = pn.widgets.RadioButtonGroup(name='### Select News Region', options=regions)
# Initial RadioButtonGroup
radio_buttons_regions = pn.widgets.RadioButtonGroup(options=regions,value='eu',name='Select region')
# Generate initial dynamic RadioButtonGroup
radio_buttons_types = generate_radio_buttons(radio_buttons_regions.value)
# Define a callback function to update the panel dynamically
def update_radio_group(event):
#print(event.new)
#print(retrieveRegionTypes(event.new))
radio_buttons_types.options = retrieveRegionTypes(event.new)
# bind the function to the widget(s)
dmap2 = hv.DynamicMap(pn.bind(generate_entity_curves, radio_buttons_regions,radio_buttons_types))
# Bind the selected value of the first RadioButtonGroup to update the second RadioButtonGroup
radio_buttons_regions.param.watch(update_radio_group, 'value')
# Define the callback function to update the HoloMap
def update_holomap(event):
initial_holomap.object = filter_region(event.new)
region_radio_button = pn.widgets.RadioButtonGroup(options=regions, value='eu', name='Select Region')
# Create the initial HoloMap
initial_holomap = filter_region(region_radio_button.value)
# Bind the callback function to the value change event of the RadioButton widget
region_radio_button.param.watch(update_holomap, 'value')
def show_page(page_key):
main_area.clear()
main_area.append(mapping[page_key])
button1.on_click(lambda event: show_page("Page1"))
button2.on_click(lambda event: show_page("Page2"))
button3.on_click(lambda event: show_page("Page3"))
button4.on_click(lambda event: show_page("Page4"))
button5.on_click(lambda event: show_page("Page5"))
button6.on_click(lambda event: show_page("Page6"))
### CREATE PAGE LAYOUTS
def CreatePage1():
return pn.Column(pn.pane.Markdown("""
This is a dashboard for a News Analysis project regarding Digital Health technology. The source data consists of around 7.8 million English-language news articles gathered from the **Dow Jones Data, News, and Analytics (DNA)**
platform (https://www.dowjones.com/professional/developer-platform/) covering a timeframe from September 1987 through December 2023. The news items text content is copyrighted and cannot be shared within this project.
Some of the data analytics visualizations show here come from a Knowledge Graph automatically extracted from DNA news sources. A Virtuoso SPARQL endpoint to this graph (named 'DHNEWS KG') is set up at the
URL: https://api-vast.jrc.service.ec.europa.eu/sparql/
---------------------------
## 1. Health Tech News Ratio
In the Health Tech News Ratio panel we present the month-sampled time series depicting the proportion of 97k news articles con-
cerning Digital Health, as identified by a text classifier, out of the total number of English language DNA news articles pertaining to Europe and the US
### 2. Top Entity Types
The Top Entity Types bar plots in the dashboard show the predominant DBpedia-inherited entity types within the graph for triples tagged with Europe, US, and EU-US region codes via their article support.
## 3. Top Key Entities
The Top Key Entities plots track the occurrence of several key entities per year, where occurrence means the entity is either the Subject or Object of an extracted triple in the KG.
## 4. Entity Chord Diagrams
Entity Chord Diagrams represent the most frequently connected entity pairs within the KG through chord illustrations, serving as both Subjects and Objects of predicative triples.
The size of the chords corresponds to the support of the depicted relations.
""", width=800), align="center")
def CreatePage2():
return pn.Column(
pn.pane.Markdown("## Health Tech News Ratio "),
create_curve_chart(),
align="center",
)
def CreatePage3():
return pn.Column(
region1,
pn.bind(create_bar_charts, region1),
align="center",
)
def CreatePage4():
return pn.Column(
pn.pane.Markdown("## Top Key Entities "),
pn.Row(pn.Column(radio_buttons_regions, radio_buttons_types), dmap2),
align="center", )
def CreatePage5():
return pn.Column(
pn.pane.Markdown("## Entity Chord Diagrams "),
pn.Row(region_radio_button, pn.bind(filter_region, region_radio_button)),
align="center", )
def CreatePage6():
url = 'https://app.vosviewer.com/?json=https%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D16q1oLQyEeMosAgeD9UkC9hSrpzAYX_-n'
return pn.Column(
pn.pane.Markdown("## VOSViewer Network "),
pn.Row(pn.panel(url))
)
mapping = {
"Page1": CreatePage1(),
"Page2": CreatePage2(),
"Page3": CreatePage3(),
"Page4": CreatePage4(),
"Page5": CreatePage5(),
"Page6": CreatePage6()
}
#################### SIDEBAR LAYOUT ##########################
sidebar = pn.Column(pn.pane.Markdown("## Pages"), button1,button2,button3,
button4,
button5,
button6,
styles={"width": "100%", "padding": "15px"})
#################### MAIN AREA LAYOUT ##########################
main_area = pn.Column(mapping["Page1"], styles={"width":"100%"})
###################### APP LAYOUT ##############################
template = pn.template.BootstrapTemplate(
title=" Digital Health in the News: Analytics Dashboard ",
sidebar=[sidebar],
main=[main_area],
header_background="black",
#site="Charting the Landscape of Digital Health",
theme=pn.template.DarkTheme,
sidebar_width=250, ## Default is 330
busy_indicator=pn.indicators.BooleanStatus(value=True),
)
### DEPLOY APP
# Serve the Panel app
template.servable() |