Spaces:
Sleeping
Sleeping
File size: 24,384 Bytes
4435d63 6fc0a4d 52413b9 6fc0a4d 7e8aad4 77d278c 6fc0a4d 4435d63 6fc0a4d 4435d63 6fc0a4d fba3086 66a179b 6fc0a4d fba3086 84fc798 fba3086 84fc798 fba3086 84fc798 fba3086 84fc798 fba3086 84fc798 17044f7 fba3086 6fc0a4d a985384 133ff3e a985384 133ff3e a985384 133ff3e a985384 6fc0a4d a985384 6fc0a4d e380a56 f87790d a985384 f87790d 6fc0a4d 66a179b 6fc0a4d e380a56 6fc0a4d f87790d a985384 6fc0a4d e380a56 6fc0a4d 7163053 6fc0a4d 7163053 6fc0a4d 7163053 6fc0a4d dad694e e380a56 77d278c e380a56 6fc0a4d de88a5f 6fc0a4d 2c6b734 6fc0a4d fba3086 6fc0a4d 4435d63 6fc0a4d a985384 6fc0a4d a985384 6fc0a4d 91bd078 6fc0a4d e380a56 6fc0a4d 11ac7d8 a985384 6fc0a4d a985384 6fc0a4d e380a56 6fc0a4d fba3086 6fc0a4d 4435d63 6fc0a4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
import warnings
warnings.filterwarnings("ignore")
import io
import os
import time
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.simplefilter(action='ignore', category=RuntimeWarning)
import pandas as pd
import csv
import ast
from tqdm import tqdm
from operator import itemgetter
import numpy as np
import re
import datetime
import html
from joblib import Parallel, delayed
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
#plt.style.use('seaborn-paper')
import holoviews as hv
from holoviews import opts, dim
from bokeh.sampledata.les_mis import data
from bokeh.io import show
from bokeh.sampledata.les_mis import data
import panel as pn
import bokeh
from bokeh.resources import INLINE
from holoviews.operation.timeseries import rolling, rolling_outlier_std
hv.extension('bokeh')
## LOAD DATASETS
dna_folder = './data'
## AECO topic over time html file:
AECO_topics_over_time_file_path = '/assets/optimized_merged_AECO_topics_over_time_2D.html'
AECO_topics_dendogram_file_path = '/assets/topic_hierarchy_optimal_params.htm'
#### full data unfiltered:
dna_articles_unfiltered_eu_time_indexed_resampled = pd.read_csv(os.path.join(dna_folder, 'dna_articles_unfiltered_eu_time_indexed_resampled.tsv'),sep='\t',header=0)
dna_articles_unfiltered_us_time_indexed_resampled = pd.read_csv(os.path.join(dna_folder, 'dna_articles_unfiltered_us_time_indexed_resampled.tsv'),sep='\t',header=0)
dna_articles_unfiltered_eu_us_time_indexed_resampled = pd.read_csv(os.path.join(dna_folder, 'dna_articles_unfiltered_eu_us_time_indexed_resampled.tsv'),sep='\t',header=0)
#### classifier filtered articles:
dh_ration_df_eu = pd.read_csv(os.path.join(dna_folder, 'dh_ration_df_eu.tsv'),sep='\t',header=0)
dh_ration_df_us = pd.read_csv(os.path.join(dna_folder, 'dh_ration_df_us.tsv'),sep='\t',header=0)
dh_ration_df_eu_us = pd.read_csv(os.path.join(dna_folder, 'dh_ration_df_eu_us.tsv'),sep='\t',header=0)
regions = ['eu', 'us', 'eu_us']
sorted_ent_type_freq_map_eu=dict()
sorted_ent_type_freq_map_us=dict()
sorted_ent_type_freq_map_eu_us=dict()
def read_top_ent_types():
reader = csv.reader(open(os.path.join(dna_folder, 'sorted_ent_type_freq_map_eu.tsv'), 'r'))
for i,row in enumerate(reader):
if i < 20:
k, v = row
sorted_ent_type_freq_map_eu[k] = int(v)
del sorted_ent_type_freq_map_eu['Entity']
reader = csv.reader(open(os.path.join(dna_folder, 'sorted_ent_type_freq_map_us.tsv'), 'r'))
for i, row in enumerate(reader):
if i < 20:
k, v = row
sorted_ent_type_freq_map_us[k] = int(v)
del sorted_ent_type_freq_map_us['Entity']
reader = csv.reader(open(os.path.join(dna_folder, 'sorted_ent_type_freq_map_eu_us.tsv'), 'r'))
for i, row in enumerate(reader):
if i < 20:
k, v = row
sorted_ent_type_freq_map_eu_us[k] = int(v)
del sorted_ent_type_freq_map_eu_us['Entity']
read_top_ent_types()
top_type_filtered_eu = ['DBpedia:Country', 'DBpedia:Organisation', 'DBpedia:Company', 'DBpedia:Person', 'DBpedia:Disease', 'DBpedia:ChemicalSubstance', 'DBpedia:Drug', 'DBpedia:GovernmentAgency', 'DBpedia:City', 'DBpedia:MonoclonalAntibody']
top_type_filtered_us = ['DBpedia:Organisation', 'DBpedia:Company', 'DBpedia:Disease', 'DBpedia:ChemicalSubstance', 'DBpedia:Person', 'DBpedia:Drug', 'DBpedia:Country', 'DBpedia:Region', 'DBpedia:MonoclonalAntibody', 'DBpedia:City', 'DBpedia:Biomolecule']
top_type_filtered_eu_us = ['DBpedia:Organisation', 'DBpedia:Company', 'DBpedia:ChemicalSubstance', 'DBpedia:Drug', 'DBpedia:Country', 'DBpedia:Person', 'DBpedia:Disease', 'DBpedia:MonoclonalAntibody', 'DBpedia:GovernmentAgency', 'DBpedia:Biomolecule', 'DBpedia:Gene']
dna_healthtech_articles_eu_time_indexed_resampled=pd.read_csv(os.path.join(dna_folder, 'dna_healthtech_articles_eu_time_indexed_resampled.tsv'),sep='\t',header=0)
dna_healthtech_articles_us_time_indexed_resampled=pd.read_csv(os.path.join(dna_folder, 'dna_healthtech_articles_us_time_indexed_resampled.tsv'),sep='\t',header=0)
dna_healthtech_articles_eu_us_time_indexed_resampled=pd.read_csv(os.path.join(dna_folder, 'dna_healthtech_articles_eu_us_time_indexed_resampled.tsv'),sep='\t',header=0)
def read_top_ent_maps():
reader = csv.reader(open(os.path.join(dna_folder, 'sorted_ent_freq_map_eu.tsv'), 'r'), delimiter='\t')
for row in reader:
k,v = row
lista = ast.literal_eval(v)
dizionario = dict()
for pair in lista:
dizionario[pair[0]]=pair[1]
dizionario = sorted(dizionario.items(), key=lambda x: x[1], reverse=True)
ent_freq_maps_eu[k]=dizionario
reader = csv.reader(open(os.path.join(dna_folder, 'sorted_ent_freq_map_us.tsv'), 'r'), delimiter='\t')
for row in reader:
k, v = row
lista = ast.literal_eval(v)
dizionario = dict()
for pair in lista:
dizionario[pair[0]] = pair[1]
dizionario = sorted(dizionario.items(), key=lambda x: x[1], reverse=True)
ent_freq_maps_us[k] = dizionario
reader = csv.reader(open(os.path.join(dna_folder, 'sorted_ent_freq_map_eu_us.tsv'), 'r'), delimiter='\t')
for row in reader:
k, v = row
lista = ast.literal_eval(v)
dizionario = dict()
for pair in lista:
dizionario[pair[0]] = pair[1]
dizionario = sorted(dizionario.items(), key=lambda x: x[1], reverse=True)
ent_freq_maps_eu_us[k] = dizionario
ent_freq_maps_eu = dict()
ent_freq_maps_us = dict()
ent_freq_maps_eu_us = dict()
read_top_ent_maps()
def read_type_filtered_triples():
for t in top_type_filtered_eu:
df = pd.read_csv(dna_folder+'/filtered_rows/eu/'+t.replace(':','_')+'.tsv', sep=" ", header=0)
df.drop(columns=['Unnamed: 0'], inplace=True)
top_type_filtered_triples_eu[t]=df
for t in top_type_filtered_us:
df = pd.read_csv(dna_folder+'/filtered_rows/us/'+t.replace(':','_')+'.tsv', sep=" ")
df.drop(columns=['Unnamed: 0'], inplace=True)
top_type_filtered_triples_us[t]=df
for t in top_type_filtered_eu_us:
df = pd.read_csv(dna_folder+'/filtered_rows/eu_us/'+t.replace(':','_')+'.tsv', sep=" ")
df.drop(columns=['Unnamed: 0'], inplace=True)
top_type_filtered_triples_eu_us[t]=df
top_type_filtered_triples_eu = dict()
top_type_filtered_triples_us = dict()
top_type_filtered_triples_eu_us = dict()
read_type_filtered_triples()
grouping_filtered = pd.read_csv(os.path.join(dna_folder, 'dna_relations.tsv'), sep=" ")
################################# CREATE CHARTS ############################
def create_curve_chart():
# Create the 3 line plots
curve_eu = hv.Curve((dh_ration_df_eu.index, dh_ration_df_eu.ids/dna_articles_unfiltered_eu_time_indexed_resampled.ids), 'Time', 'Digital Health News Ratio',label='EU')
curve_us = hv.Curve((dh_ration_df_us.index, dh_ration_df_us.ids/dna_articles_unfiltered_us_time_indexed_resampled.ids),'Time', 'Digital Health News Ratio', label='US')
curve_eu_us = hv.Curve((dh_ration_df_eu_us.index, dh_ration_df_eu_us.ids/dna_articles_unfiltered_eu_us_time_indexed_resampled.ids),'Time', 'Digital Health News Ratio', label='EU-US')
#Overlay the line plots
overlay = curve_eu * curve_us * curve_eu_us
overlay.opts(show_legend = True, legend_position='top_left', width=1200, height=600)
return overlay
macro_topics = ["Energy-Efficient Building Design for Thermal Comfort and Sustainability","Indoor Air Quality and Energy Efficiency in Low-Energy Houses","Urban Planning and Development in China\'s Cities", "Design Thinking and Sustainable Product Development", "Smart Cities and Urban Computing", "Urban Resilience and Water Management","Renewable Energy Systems: Solar PV & Building Applications","Exploring the Intersection of Traditional Heritage and Modern Steel Architecture in Historical Buildings","Green Building Assessment and Design","Landscape Design, Planning, and Research: Integrating Cultural, Ecological, and Rural Perspectives", "Noise and Acoustic Design in Urban Development","Sustainable Building Materials: Wood & 3D Printing Innovations","BIM in AEC: Trends, Challenges, and Opportunities","Urban Food Systems: Community Development and Social Sustainability in Cities","Innovative Bridge Design and Construction: Trends and Case Studies", "Cavity Flow and Heat Transfer"]
macro_topics_active_subset = ["Energy-Efficient Building Design for Thermal Comfort and Sustainability","Indoor Air Quality and Energy Efficiency in Low-Energy Houses","Smart Cities and Urban Computing", "Renewable Energy Systems: Solar PV & Building Applications","BIM in AEC: Trends, Challenges, and Opportunities"]
def load_institute_network(topic, **kwargs):
if topic=='Energy-Efficient Building Design for Thermal Comfort and Sustainability':
html = """<iframe src="https://app.vosviewer.com/?json=https%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D16q1oLQyEeMosAgeD9UkC9hSrpzAYX_-n" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Indoor Air Quality and Energy Efficiency in Low-Energy Houses':
html = """<iframe src="https://app.vosviewer.com/?json=https%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D1rqPx3X_9Hnv9mTq2bMCbWWh5VIOw9CRh" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Smart Cities and Urban Computing':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Renewable Energy Systems: Solar PV & Building Applications':
html = """<iframe src="https://app.vosviewer.com/?json=https%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D1BC0Dbmayyxv3G9wLt2fUSTiUL2vwzuLD" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='BIM in AEC: Trends, Challenges, and Opportunities':
html = """<iframe src="https://app.vosviewer.com/?json=https%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D1V-Cto19dxV_GR3MtNP6Yk642CnTQkjEK" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
def load_country_network(topic, **kwargs):
if topic=='Energy-Efficient Building Design for Thermal Comfort and Sustainability':
html = """<iframe src="https://app.vosviewer.com/?json=https%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D1W-ZjXP5vpJ7pwaCT7KFjh1txNgBkIT6h" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Indoor Air Quality and Energy Efficiency in Low-Energy Houses':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Smart Cities and Urban Computing':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='Renewable Energy Systems: Solar PV & Building Applications':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
elif topic=='BIM in AEC: Trends, Challenges, and Opportunities':
html = """<iframe src="" width="1000" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
return html_pane
# Define a function to generate Curve based on selected values
def generate_entity_curves(region_value, type_value, **kwargs):
if region_value=='eu':
top20Ents = ent_freq_maps_eu[type_value]
curveList = []
for ent in top20Ents:
entityTriples = top_type_filtered_triples_eu[type_value][(top_type_filtered_triples_eu[type_value]['subjEntityLinks']==ent[0]) | (top_type_filtered_triples_eu[type_value]['objEntityLinks']==ent[0])]
entityTriples_time_indexed = entityTriples.set_index(pd.DatetimeIndex(entityTriples['timestamp']), inplace=False)
del entityTriples_time_indexed['timestamp']
entityTriples_time_indexed_resampled = entityTriples_time_indexed.resample("Y").count()
#print(entityTriples_time_indexed_resampled)
entityTriples_time_indexed_resampled = entityTriples_time_indexed_resampled.reindex(dna_healthtech_articles_eu_time_indexed_resampled.index, fill_value=0)
curve = hv.Curve((entityTriples_time_indexed_resampled.index, (entityTriples_time_indexed_resampled['doc_id']/dna_healthtech_articles_eu_time_indexed_resampled['ids'])), 'Time', 'Key Entity Occurrence', label=ent[0])
curve.opts(autorange='y')
#curve.opts(logy=True)
curveList.append(curve)
overlay = hv.Overlay(curveList)
overlay.opts(legend_muted=False, legend_cols=4, show_legend = True, legend_position='top_left', fontsize={'legend':13},width=1200, height=800)
return overlay
elif region_value=='us':
top20Ents = ent_freq_maps_us[type_value]
curveList = []
for ent in top20Ents:
entityTriples = top_type_filtered_triples_us[type_value][(top_type_filtered_triples_us[type_value]['subjEntityLinks']==ent[0]) | (top_type_filtered_triples_us[type_value]['objEntityLinks']==ent[0])]
entityTriples_time_indexed = entityTriples.set_index(pd.DatetimeIndex(entityTriples['timestamp']), inplace=False)
del entityTriples_time_indexed['timestamp']
entityTriples_time_indexed_resampled = entityTriples_time_indexed_resampled.reindex(dna_healthtech_articles_us_time_indexed_resampled.index, fill_value=0)
curve = hv.Curve((entityTriples_time_indexed_resampled.index, (entityTriples_time_indexed_resampled['doc_id']/dna_healthtech_articles_us_time_indexed_resampled['ids'])), 'Time', 'Key Entity Occurrence', label=ent[0])
curve.opts(autorange='y')
curveList.append(curve)
overlay = hv.Overlay(curveList)
overlay.opts(legend_muted=False, legend_cols=4, show_legend = True, legend_position='top_left', fontsize={'legend':13},width=1200, height=800)
return overlay
elif region_value=='eu_us':
top20Ents = ent_freq_maps_eu_us[type_value]
curveList = []
for ent in top20Ents:
entityTriples = top_type_filtered_triples_eu_us[type_value][(top_type_filtered_triples_eu_us[type_value]['subjEntityLinks']==ent[0]) | (top_type_filtered_triples_eu_us[type_value]['objEntityLinks']==ent[0])]
entityTriples_time_indexed = entityTriples.set_index(pd.DatetimeIndex(entityTriples['timestamp']), inplace=False)
del entityTriples_time_indexed['timestamp']
entityTriples_time_indexed_resampled = entityTriples_time_indexed_resampled.reindex(dna_healthtech_articles_eu_us_time_indexed_resampled.index, fill_value=0)
curve = hv.Curve((entityTriples_time_indexed_resampled.index, (entityTriples_time_indexed_resampled['doc_id']/dna_healthtech_articles_eu_us_time_indexed_resampled['ids'])), 'Time', 'Key Entity Occurrence', label=ent[0])
curve.opts(autorange='y')
curveList.append(curve)
overlay = hv.Overlay(curveList)
overlay.opts(legend_muted=False, legend_cols=4, show_legend = True, legend_position='top_left', fontsize={'legend':13},width=1200, height=800)
return overlay
############################# WIDGETS & CALLBACK ###########################################
def filter_data0(df, min_value):
filtered_df = df[df['value'] >= min_value]
return filtered_df
def plot_chord0_new(df,min_value):
filtered_df = filter_data0(df, min_value)
# Create a Holoviews Dataset for nodes
nodes = hv.Dataset(filtered_df, 'index')
nodes.data.head()
chord = hv.Chord(filtered_df, ['source', 'target'], ['value'])
return chord.opts(opts.Chord(cmap='Category20', edge_cmap='Category20', label_text_color="white", node_color = hv.dim('index').str(), edge_color = hv.dim('source').str(), labels = 'index', tools=['hover'], width=800, height=800))
def retrieveRegionTypes(region):
if region == 'eu':
return top_type_filtered_eu
elif region == 'us':
return top_type_filtered_us
elif region == 'eu_us':
return top_type_filtered_eu_us
def filter_region(region):
if region == 'eu':
region_grouping = grouping_filtered[grouping_filtered['region'] == 'eu']
elif region == 'us':
region_grouping = grouping_filtered[grouping_filtered['region'] == 'us']
elif region == 'eu_us':
region_grouping = grouping_filtered[grouping_filtered['region'] == 'eu_us']
#print(len(region_grouping))
# Define range for minimum value slider
min_value_range = region_grouping['value'].unique()
min_value_range.sort()
# Define HoloMap with minimum value and attribute as key dimensions
holomap = hv.HoloMap({min_value: plot_chord0_new(region_grouping, min_value)
for min_value in min_value_range},
kdims=['Show triples with support greater than']
)
return holomap
# Define a function to generate Entity List RadioButtonGroup based on Region selection
def generate_radio_buttons(value):
if value == 'eu':
return pn.widgets.RadioButtonGroup(options=retrieveRegionTypes(value), value='DBpedia:Company', name='eu', orientation='vertical')
elif value == 'us':
return pn.widgets.RadioButtonGroup(options=retrieveRegionTypes(value), value='DBpedia:Disease', name='us', orientation='vertical')
elif value == 'eu_us':
return pn.widgets.RadioButtonGroup(options=retrieveRegionTypes(value), value='DBpedia:Person', name='eu_us', orientation='vertical')
# https://tabler-icons.io/
button0 = pn.widgets.Button(name="Introduction", button_type="warning", icon="file-info", styles={"width": "100%"})
button1 = pn.widgets.Button(name="AECO Macro Topics Hierarchy", button_type="warning", icon="file-info", styles={"width": "100%"})
button2 = pn.widgets.Button(name="AECO Macro Topics Trends", button_type="warning", icon="chart-histogram", styles={"width": "100%"})
button3 = pn.widgets.Button(name="Research Collaboration Networks: Institutes", button_type="warning", icon="chart-dots-3", styles={"width": "100%"})
button4 = pn.widgets.Button(name="Research Collaboration Networks: Countries", button_type="warning", icon="chart-dots-3", styles={"width": "100%"})
#button5 = pn.widgets.Button(name="Entity Chord Diagrams", button_type="warning", icon="chart-dots-filled", styles={"width": "100%"})
region1 = pn.widgets.RadioButtonGroup(name='### Select News Region', options=regions)
macro_topics_button = pn.widgets.Select(name='Select Macro Topic', value='Energy-Efficient Building Design for Thermal Comfort and Sustainability', options=macro_topics_active_subset)
# Initial RadioButtonGroup
radio_buttons_regions = pn.widgets.RadioButtonGroup(options=regions,value='eu',name='Select region')
# Generate initial dynamic RadioButtonGroup
radio_buttons_types = generate_radio_buttons(radio_buttons_regions.value)
# Define a callback function to update the panel dynamically
def update_radio_group(event):
#print(event.new)
#print(retrieveRegionTypes(event.new))
radio_buttons_types.options = retrieveRegionTypes(event.new)
# bind the function to the widget(s)
dmap2 = hv.DynamicMap(pn.bind(generate_entity_curves, radio_buttons_regions,radio_buttons_types))
# Bind the selected value of the first RadioButtonGroup to update the second RadioButtonGroup
radio_buttons_regions.param.watch(update_radio_group, 'value')
# Define the callback function to update the HoloMap
def update_holomap(event):
initial_holomap.object = filter_region(event.new)
region_radio_button = pn.widgets.RadioButtonGroup(options=regions, value='eu', name='Select Region')
# Create the initial HoloMap
initial_holomap = filter_region(region_radio_button.value)
# Bind the callback function to the value change event of the RadioButton widget
region_radio_button.param.watch(update_holomap, 'value')
def show_page(page_key):
main_area.clear()
main_area.append(mapping[page_key])
button0.on_click(lambda event: show_page("Page0"))
button1.on_click(lambda event: show_page("Page1"))
button2.on_click(lambda event: show_page("Page2"))
button3.on_click(lambda event: show_page("Page3"))
button4.on_click(lambda event: show_page("Page4"))
#button5.on_click(lambda event: show_page("Page5"))
#button6.on_click(lambda event: show_page("Page6"))
### CREATE PAGE LAYOUTS
def CreatePage0():
return pn.Column(pn.pane.Markdown("""
This is a dashboard for a Research Analysis project regarding research and technology in the AECO domain. The source data consists of around
276k English-language research papers gathered from the openalex.org graph database, covering a timeframe from 2011 through 2024.
---------------------------
## AECO Macro Topics
In the AECO Macro Topics panel we present the 6-month-sampled time series depicting the number of published research papers
for the 16 macro-topics automatically detected by an optimized BerTopic model and ppst-processed for manual topic merging.
### Research Collaboration Networks: Institutes
### Research Collaboration Networks: Authors
""", width=800), align="center")
def CreatePage1():
# Load the HTML content from the local file
#with open(AECO_topics_over_time_file_path, 'r', encoding='utf-8') as file:
# html_content = file.read()
# Use an iframe to load the local HTML file
iframe_html = f'<iframe src="{AECO_topics_dendogram_file_path}" width="1200px" height="1800px"></iframe>'
# Create an HTML pane to render the content
html_pane = pn.pane.HTML(iframe_html , sizing_mode='stretch_both')
return pn.Column(pn.pane.Markdown(" ## AECO Macro Topics Dendogram "), html_pane, align="center")
def CreatePage2():
# Load the HTML content from the local file
#with open(AECO_topics_over_time_file_path, 'r', encoding='utf-8') as file:
# html_content = file.read()
# Use an iframe to load the local HTML file
iframe_html = f'<iframe src="{AECO_topics_over_time_file_path}" width="1200px" height="1800px"></iframe>'
# Create an HTML pane to render the content
html_pane = pn.pane.HTML(iframe_html , sizing_mode='stretch_both')
return pn.Column(pn.pane.Markdown(" ## AECO Macro Topics "), html_pane, align="center")
def CreatePage3():
return pn.Column(
macro_topics_button,
pn.bind(load_institute_network, macro_topics_button),
align="center",
)
def CreatePage4():
return pn.Column(
macro_topics_button,
pn.bind(load_country_network, macro_topics_button),
align="center",
)
def CreatePage5():
return pn.Column(
pn.pane.Markdown("## Entity Chord Diagrams "),
pn.Row(region_radio_button, pn.bind(filter_region, region_radio_button)),
align="center", )
def CreatePage6():
html = """<iframe src="https://app.vosviewer.com/?json=https%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D16q1oLQyEeMosAgeD9UkC9hSrpzAYX_-n" width="800" height="800"></iframe>"""
html_pane = pn.pane.HTML(html)
#url = 'https://app.vosviewer.com/?json=https%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D16q1oLQyEeMosAgeD9UkC9hSrpzAYX_-n'
return html_pane
#panel.show()
#return pn.Column(
# pn.pane.Markdown("## VOSViewer Network "),
# pn.Row(panel)
# )
mapping = {
"Page0": CreatePage0(),
"Page1": CreatePage1(),
"Page2": CreatePage2(),
"Page3": CreatePage3(),
"Page4": CreatePage4(),
#"Page5": CreatePage5(),
#"Page6": CreatePage6()
}
#################### SIDEBAR LAYOUT ##########################
sidebar = pn.Column(pn.pane.Markdown("## Pages"),button0,button1,button2,button3,button4,
#button5,
#button6,
styles={"width": "100%", "padding": "15px"})
#################### MAIN AREA LAYOUT ##########################
main_area = pn.Column(mapping["Page1"], styles={"width":"100%"})
###################### APP LAYOUT ##############################
template = pn.template.BootstrapTemplate(
title=" AECO Tech Dashboard",
sidebar=[sidebar],
main=[main_area],
header_background="black",
#site="Charting the Landscape of AECO Research",
theme=pn.template.DarkTheme,
sidebar_width=330, ## Default is 330
busy_indicator=pn.indicators.BooleanStatus(value=True),
)
### DEPLOY APP
# Serve the Panel app
template.servable() |