File size: 16,228 Bytes
15067e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import os
import io
import base64
import gc
from huggingface_hub.utils import HfHubHTTPError
from langchain_core.prompts import PromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
import io, base64
from PIL import Image
import gradio as gr
import torch
import gradio as gr
import numpy as np
import pandas as pd
import pymupdf
from PIL import Image
from pypdf import PdfReader
from dotenv import load_dotenv
from welcome_text import WELCOME_INTRO

from doctr.io import DocumentFile
from doctr.models import ocr_predictor
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration

import chromadb
from chromadb.utils import embedding_functions
from chromadb.utils.data_loaders import ImageLoader

from langchain_core.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEndpoint

from utils import extract_pdfs, extract_images, clean_text, image_to_bytes
from utils import *

# ─────────────────────────────────────────────────────────────────────────────
# Load .env
load_dotenv()
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN")

# OCR + multimodal image description setup
ocr_model = ocr_predictor(
    "db_resnet50", "crnn_mobilenet_v3_large", pretrained=True, assume_straight_pages=True
)
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
vision_model = LlavaNextForConditionalGeneration.from_pretrained(
    "llava-hf/llava-v1.6-mistral-7b-hf",
    torch_dtype=torch.float16,
    low_cpu_mem_usage=True
).to("cpu")



def get_image_description(image: Image.Image) -> str:
    """Generate a one-sentence description via LlavaNext."""
    torch.cuda.empty_cache()
    gc.collect()
    prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
    inputs = processor(prompt, image, return_tensors="pt").to("cpu")
    output = vision_model.generate(**inputs, max_new_tokens=100)
    return processor.decode(output[0], skip_special_tokens=True)

# Vector DB setup
# at top of file, alongside your other imports
from chromadb.utils import embedding_functions
from chromadb.utils.data_loaders import ImageLoader
import chromadb
from langchain.text_splitter import RecursiveCharacterTextSplitter
from utils import image_to_bytes  # your helper

# 1) Create one shared embedding function (defaulting to All-MiniLM-L6-v2, 384-dim)
SHARED_EMB_FN = embedding_functions.SentenceTransformerEmbeddingFunction(
    model_name="all-MiniLM-L6-v2"
)

def get_vectordb(text: str, images: list[Image.Image], img_names: list[str]):
    """
    Build an in-memory ChromaDB instance with two collections:
      • text_db  (chunks of the PDF text)
      • image_db (image descriptions + raw image bytes)
    Returns the Chroma client for later querying.
    """
    # ——— 1) Init & wipe old ————————————————
    client = chromadb.EphemeralClient()
    for col in ("text_db", "image_db"):
        if col in [c.name for c in client.list_collections()]:
            client.delete_collection(col)

    # ——— 2) Create fresh collections —————————
    text_col = client.get_or_create_collection(
        name="text_db",
        embedding_function=SHARED_EMB_FN,
        data_loader=ImageLoader(),   # loader only matters for images, benign here
    )
    img_col = client.get_or_create_collection(
        name="image_db",
        embedding_function=SHARED_EMB_FN,
        metadata={"hnsw:space": "cosine"},
        data_loader=ImageLoader(),
    )

    # ——— 3) Add images if any ———————————————
    if images:
        descs = []
        metas = []
        for idx, img in enumerate(images):
            # build one-line caption (or fallback)
            try:
                caption = get_image_description(img)
            except Exception:
                caption = "⚠️ could not describe image"
            descs.append(f"{img_names[idx]}: {caption}")
            metas.append({"image": image_to_bytes(img)})

        img_col.add(
            ids=[str(i) for i in range(len(images))],
            documents=descs,
            metadatas=metas,
        )

    # ——— 4) Chunk & add text ———————————————
    splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
    docs = splitter.create_documents([text])
    text_col.add(
        ids=[str(i) for i in range(len(docs))],
        documents=[d.page_content for d in docs],
    )

    return client



# Text extraction
def result_to_text(result, as_text=False):
    pages = []
    for pg in result.pages:
        txt = " ".join(w.value for block in pg.blocks for line in block.lines for w in line.words)
        pages.append(clean_text(txt))
    return "\n\n".join(pages) if as_text else pages

OCR_CHOICES = {
    "db_resnet50 + crnn_mobilenet_v3_large": ("db_resnet50", "crnn_mobilenet_v3_large"),
    "db_resnet50 + crnn_resnet31":          ("db_resnet50", "crnn_resnet31"),
}

def extract_data_from_pdfs(
    docs,
    session,
    include_images,    # "Include Images" or "Exclude Images"
    do_ocr,            # "Get Text With OCR" or "Get Available Text Only"
    ocr_choice,        # key into OCR_CHOICES
    vlm_choice,        # HF repo ID for LlavaNext
    progress=gr.Progress()
):
    """
    1) Dynamically instantiate the chosen OCR pipeline (if any)
    2) Dynamically instantiate the chosen vision‐language model
    3) Override the global get_image_description to use that model for captions
    4) Extract text & images, index into ChromaDB
    """
    if not docs:
        raise gr.Error("No documents to process")

    # ——— 1) Set up OCR if requested ————————————————
    if do_ocr == "Get Text With OCR":
        db_m, crnn_m = OCR_CHOICES[ocr_choice]
        local_ocr = ocr_predictor(db_m, crnn_m, pretrained=True, assume_straight_pages=True)
    else:
        local_ocr = None

    # ——— 2) Set up vision‐language model —————————————
    proc = LlavaNextProcessor.from_pretrained(vlm_choice)
    vis  = LlavaNextForConditionalGeneration.from_pretrained(
        vlm_choice,
        torch_dtype=torch.float16,
        low_cpu_mem_usage=True
    ).to("cpu")

    # ——— 3) Monkey‐patch global get_image_description ————
    def describe(img: Image.Image) -> str:
        torch.cuda.empty_cache(); gc.collect()
        prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
        inputs = proc(prompt, img, return_tensors="pt").to("cpu")
        output = vis.generate(**inputs, max_new_tokens=100)
        return proc.decode(output[0], skip_special_tokens=True)

    global get_image_description
    get_image_description = describe

    # ——— 4) Extract text & images ————————————————
    progress(0.2, "Extracting text and images…")
    all_text, images, names = "", [], []
    for path in docs:
        if local_ocr:
            pdf = DocumentFile.from_pdf(path)
            res = local_ocr(pdf)
            all_text += result_to_text(res, as_text=True) + "\n\n"
        else:
            txt = PdfReader(path).pages[0].extract_text() or ""
            all_text += "\n\n" + txt + "\n\n"

        if include_images == "Include Images":
            imgs = extract_images([path])
            images.extend(imgs)
            names.extend([os.path.basename(path)] * len(imgs))

    # ——— 5) Index into vector DB ————————————————
    progress(0.6, "Indexing in vector DB…")
    vdb = get_vectordb(all_text, images, names)

    session["processed"] = True
    sample_imgs = images[:4] if include_images == "Include Images" else []
    return (
        vdb,
        session,
        gr.Row(visible=True),
        all_text[:2000] + "...",
        sample_imgs,
        "<h3>Done!</h3>"
    )
# Chat function
def conversation(
    vdb, question: str, num_ctx, img_ctx,
    history: list, temp: float, max_tok: int, model_id: str
):
    # 0) Cast the context sliders to ints
    num_ctx = int(num_ctx)
    img_ctx = int(img_ctx)

    # 1) Guard: must have extracted first
    if vdb is None:
        raise gr.Error("Please extract data first")

    # 2) Instantiate the chosen HF endpoint
    llm = HuggingFaceEndpoint(
        repo_id=model_id,
        temperature=temp,
        max_new_tokens=max_tok,
        huggingfacehub_api_token=HF_TOKEN
    )

    # 3) Query text collection
    text_col = vdb.get_collection("text_db")
    docs = text_col.query(
        query_texts=[question],
        n_results=num_ctx,              # now an int
        include=["documents"]
    )["documents"][0]

    # 4) Query image collection
    img_col = vdb.get_collection("image_db")
    img_q = img_col.query(
        query_texts=[question],
        n_results=img_ctx,              # now an int
        include=["metadatas", "documents"]
    )
    # … rest unchanged …
    images, img_descs = [], img_q["documents"][0] or ["No images found"]
    for meta in img_q["metadatas"][0]:
        b64 = meta.get("image", "")
        try:
            images.append(Image.open(io.BytesIO(base64.b64decode(b64))))
        except:
            pass
    img_desc = "\n".join(img_descs)

    # 5) Build prompt
    prompt = PromptTemplate(
        template="""
Context:
{text}

Included Images:
{img_desc}

Question:
{q}

Answer:
""",
        input_variables=["text", "img_desc", "q"],
    )
    context = "\n\n".join(docs)
    user_input = prompt.format(text=context, img_desc=img_desc, q=question)

    # 6) Call the model with error handling
    try:
        answer = llm.invoke(user_input)
    except HfHubHTTPError as e:
        if e.response.status_code == 404:
            answer = f"❌ Model `{model_id}` not hosted on HF Inference API."
        else:
            answer = f"⚠️ HF API error: {e}"
    except Exception as e:
        answer = f"⚠️ Unexpected error: {e}"

    # 7) Append to history
    new_history = history + [
        {"role":"user",      "content": question},
        {"role":"assistant","content": answer}
    ]

    # 8) Return updated history, docs, images
    return new_history, docs, images



# ─────────────────────────────────────────────────────────────────────────────
# Gradio UI
CSS = """
footer {visibility:hidden;}
"""

MODEL_OPTIONS = [
    "HuggingFaceH4/zephyr-7b-beta",
    "mistralai/Mistral-7B-Instruct-v0.2",
    "openchat/openchat-3.5-0106",
    "google/gemma-7b-it",
    "deepseek-ai/deepseek-llm-7b-chat",
    "microsoft/Phi-3-mini-4k-instruct",
    "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
    "Qwen/Qwen1.5-7B-Chat",
    "tiiuae/falcon-7b-instruct",              # Falcon 7B Instruct
    "bigscience/bloomz-7b1",                  # BLOOMZ 7B
    "facebook/opt-2.7b",  
]

with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
    vdb_state     = gr.State()
    session_state = gr.State({})

    # ─── Welcome Screen ─────────────────────────────────────────────
    with gr.Column(visible=True) as welcome_col:

        gr.Markdown(
           f"<div style='text-align: center'>\n{WELCOME_INTRO}\n</div>",
            elem_id="welcome_md"
        )
        start_btn = gr.Button("🚀 Start")

    # ─── Main App (hidden until Start is clicked) ───────────────────
    with gr.Column(visible=False) as app_col:
        gr.Markdown("## 📚 Multimodal Chat-PDF Playground")

        with gr.Tabs():
            # Tab 1: Upload & Extract
            with gr.TabItem("1. Upload & Extract"):
                docs = gr.File(
                    file_count="multiple",
                    file_types=[".pdf"],
                    label="Upload PDFs"
                )
                include_dd = gr.Radio(
                    ["Include Images", "Exclude Images"],
                    value="Exclude Images",
                    label="Images"
                )
                ocr_dd = gr.Dropdown(
                    choices=[
                        "db_resnet50 + crnn_mobilenet_v3_large",
                        "db_resnet50 + crnn_resnet31"
                    ],
                    value="db_resnet50 + crnn_mobilenet_v3_large",
                    label="OCR Model"
                )
                vlm_dd = gr.Dropdown(
                    choices=[
                        "llava-hf/llava-v1.6-mistral-7b-hf",
                        "llava-hf/llava-v1.5-mistral-7b"
                    ],
                    value="llava-hf/llava-v1.6-mistral-7b-hf",
                    label="Vision-Language Model"
                )
                extract_btn = gr.Button("Extract")
                preview_text = gr.Textbox(lines=10, label="Sample Text", interactive=False)
                preview_img  = gr.Gallery(label="Sample Images", rows=2, value=[])

                extract_btn.click(
                    extract_data_from_pdfs,
                    inputs=[
                        docs,
                        session_state,
                        include_dd,
                        gr.Radio(
                            ["Get Text With OCR", "Get Available Text Only"],
                            value="Get Available Text Only",
                            label="OCR"
                        ),
                        ocr_dd,
                        vlm_dd
                    ],
                    outputs=[
                        vdb_state,
                        session_state,
                        gr.Row(visible=False),
                        preview_text,
                        preview_img,
                        gr.HTML()
                    ]
                )

            # Tab 2: Chat
            with gr.TabItem("2. Chat"):
                with gr.Row():
                    with gr.Column(scale=3):
                        chat = gr.Chatbot(type="messages", label="Chat")
                        msg  = gr.Textbox(
                            placeholder="Ask about your PDF...",
                            label="Your question"
                        )
                        send = gr.Button("Send")
                    with gr.Column(scale=1):
                        model_dd = gr.Dropdown(
                            MODEL_OPTIONS,
                            value=MODEL_OPTIONS[0],
                            label="Choose Chat Model"
                        )
                        num_ctx = gr.Slider(1,20,value=3,label="Text Contexts")
                        img_ctx = gr.Slider(1,10,value=2,label="Image Contexts")
                        temp    = gr.Slider(0.1,1.0,step=0.1,value=0.4,label="Temperature")
                        max_tok = gr.Slider(10,1000,step=10,value=200,label="Max Tokens")

                send.click(
                    conversation,
                    inputs=[
                        vdb_state,
                        msg,
                        num_ctx,
                        img_ctx,
                        chat,
                        temp,
                        max_tok,
                        model_dd
                    ],
                    outputs=[
                        chat,
                        gr.Dataframe(),
                        gr.Gallery(label="Relevant Images", rows=2, value=[])
                    ]
                )

        # Footer inside app_col
        gr.HTML("<center>Made with ❤️ by Zamal</center>")

    # ─── Wire the Start button ───────────────────────────────────────
    start_btn.click(
        fn=lambda: (gr.update(visible=False), gr.update(visible=True)),
        inputs=[], outputs=[welcome_col, app_col]
    )

if __name__ == "__main__":
    demo.launch()