File size: 1,699 Bytes
cfa9e5f
 
 
576c75f
d1c0723
cfa9e5f
ed31f0c
cfa9e5f
 
 
 
 
e959fc1
cfa9e5f
 
 
346de65
cfa9e5f
 
 
 
 
 
 
 
 
 
 
ed31f0c
cfa9e5f
 
da13056
cfa9e5f
 
 
 
 
ed31f0c
 
 
 
 
cfa9e5f
 
 
 
 
 
 
f95087f
cfa9e5f
f95087f
cfa9e5f
f95087f
cfa9e5f
 
 
 
da13056
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# app.py
import gradio as gr

import spaces

from rag_agent import prepare_index_and_chunks, load_model
from sentence_transformers import SentenceTransformer
from utils.retrieval import retrieve_relevant_chunks
from utils.generation import generate_answer

# β€”β€”β€” FIXED CONFIGURATION β€”β€”β€”
PDF_FOLDER      = "./data"  # your folder with all PDFs
EMBEDDER        = "all-MiniLM-L6-v2"
CHUNK_SIZE      = 500
OVERLAP         = 100
INDEX_TYPE      = "innerproduct"
MODEL_NAME      = "AliMaatouk/LLama-3-8B-Tele-it" #"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
TOP_K           = 5

# β€”β€”β€” PREPARE INDEX & MODEL ONCE β€”β€”β€”
faiss_index_path, chunks_path = prepare_index_and_chunks(
    pdf_folder=PDF_FOLDER,
    chunk_size=CHUNK_SIZE,
    overlap=OVERLAP,
    index_type=INDEX_TYPE,
    embedder_name=EMBEDDER
)
model, tokenizer = load_model(MODEL_NAME)
embedder = SentenceTransformer(EMBEDDER)

# β€”β€”β€” INFERENCE FUNCTION β€”β€”β€”
@spaces.GPU()
def answer_query(query: str) -> str:
    if not query.strip():
        return "⚠️ Please enter a question."
    # Retrieve top-K chunks
    chunks = retrieve_relevant_chunks(
        query,
        embedder,
        TOP_K,
        faiss_index_path,
        chunks_path
    )
    # Generate answer
    return generate_answer(query, chunks, model, tokenizer)

# β€”β€”β€” GRADIO UI β€”β€”β€”
iface = gr.Interface(
    fn=answer_query,
    inputs=gr.Textbox(lines=2, placeholder="Type your question here…", label="Question"),
    outputs=gr.Textbox(label="Answer"),
    title="πŸ“‘ SpectrumGPT",
    description=(
        "Answer questions on spectrum regulations.\n\n"
    )
)

if __name__ == "__main__":
    iface.launch(share=True)