File size: 1,644 Bytes
cfa9e5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# app.py
import gradio as gr

from rag_agent import prepare_index_and_chunks, load_model
from utils.retrieval import retrieve_relevant_chunks
from utils.generation import generate_answer

# β€”β€”β€” FIXED CONFIGURATION β€”β€”β€”
PDF_FOLDER      = "./data"  # your folder with all PDFs
EMBEDDER        = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
CHUNK_SIZE      = 500
OVERLAP         = 100
INDEX_TYPE      = "innerproduct"
MODEL_NAME      = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
TOP_K           = 5

# β€”β€”β€” PREPARE INDEX & MODEL ONCE β€”β€”β€”
faiss_index_path, chunks_path = prepare_index_and_chunks(
    pdf_folder=PDF_FOLDER,
    chunk_size=CHUNK_SIZE,
    overlap=OVERLAP,
    index_type=INDEX_TYPE,
    embedder_name=EMBEDDER
)
model, tokenizer = load_model(MODEL_NAME)

# β€”β€”β€” INFERENCE FUNCTION β€”β€”β€”
def answer_query(query: str) -> str:
    if not query.strip():
        return "⚠️ Please enter a question."
    # Retrieve top-K chunks
    chunks = retrieve_relevant_chunks(
        query=query,
        embedder_name=EMBEDDER,
        k=TOP_K,
        faiss_index=faiss_index_path,
        chunks_path=chunks_path
    )
    # Generate answer
    return generate_answer(query, chunks, model, tokenizer)

# β€”β€”β€” GRADIO UI β€”β€”β€”
iface = gr.Interface(
    fn=answer_query,
    inputs=gr.Textbox(lines=2, placeholder="Type your telecom question here…", label="Question"),
    outputs=gr.Textbox(label="Answer"),
    title="πŸ“‘ Telecom RAG Assistant",
    description=(
        "Ask questions over the preloaded telecom regulation PDFs.\n\n"
    )
)

if __name__ == "__main__":
    iface.launch()