import gradio as gr import numpy as np import torch import librosa import soundfile as sf from transformers import AutoFeatureExtractor, AutoModelForAudioClassification import matplotlib.pyplot as plt from matplotlib.colors import Normalize import tempfile import os # Constants SAMPLING_RATE = 16000 MODEL_NAME = "MIT/ast-finetuned-audioset-10-10-0.4593" DEFAULT_THRESHOLD = 0.7 # Load model and feature extractor feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME) model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME) # Equipment knowledge base EQUIPMENT_RECOMMENDATIONS = { "bearing": { "high_frequency": "Recommend bearing replacement. High-frequency noise indicates wear or lubrication issues.", "low_frequency": "Check for improper installation or contamination in bearings.", "irregular": "Possible bearing cage damage. Schedule vibration analysis." }, "pump": { "cavitation": "Pump cavitation detected. Check suction conditions and NPSH.", "impeller": "Impeller damage likely. Inspect and balance if needed.", "misalignment": "Misalignment detected. Perform laser shaft alignment." }, "motor": { "electrical": "Electrical fault suspected. Check windings and connections.", "mechanical": "Mechanical imbalance detected. Perform dynamic balancing.", "bearing": "Motor bearing wear detected. Schedule replacement." }, "compressor": { "valve": "Compressor valve leakage suspected. Perform valve test.", "pulsation": "Pulsation issues detected. Check dampeners and piping.", "surge": "Compressor surge condition. Review control settings." } } def analyze_frequency_patterns(audio, sr): """Analyze frequency patterns to identify potential issues""" patterns = [] # Spectral analysis spectral_centroid = librosa.feature.spectral_centroid(y=audio, sr=sr)[0] spectral_rolloff = librosa.feature.spectral_rolloff(y=audio, sr=sr)[0] mean_centroid = np.mean(spectral_centroid) mean_rolloff = np.mean(spectral_rolloff) if mean_centroid > 3000: # High frequency components patterns.append("high_frequency") elif mean_centroid < 1000: # Low frequency components patterns.append("low_frequency") if mean_rolloff > 8000: # Rich in harmonics patterns.append("harmonic_rich") return patterns def generate_recommendation(prediction, confidence, audio, sr): """Generate maintenance recommendations based on analysis""" if prediction == "Normal": return "No immediate action required. Equipment operating within normal parameters." patterns = analyze_frequency_patterns(audio, sr) # Simple equipment type classifier based on frequency profile spectral_flatness = librosa.feature.spectral_flatness(y=audio)[0] mean_flatness = np.mean(spectral_flatness) if mean_flatness < 0.2: equipment_type = "bearing" elif 0.2 <= mean_flatness < 0.6: equipment_type = "pump" else: equipment_type = "motor" if np.mean(audio) < 0.1 else "compressor" # Generate specific recommendations recommendations = ["šŸ”§ Maintenance Recommendations:"] recommendations.append(f"Detected issues in {equipment_type} with {confidence:.1%} confidence") for pattern in patterns: if pattern in EQUIPMENT_RECOMMENDATIONS.get(equipment_type, {}): recommendations.append(f"→ {EQUIPMENT_RECOMMENDATIONS[equipment_type][pattern]}") # General recommendations if prediction == "Anomaly": recommendations.append("\nšŸ› ļø Suggested Actions:") recommendations.append("1. Isolate equipment if possible") recommendations.append("2. Perform visual inspection") recommendations.append("3. Schedule detailed diagnostics") recommendations.append(f"4. Review last maintenance records ({equipment_type})") if confidence > 0.8: recommendations.append("\n🚨 Urgent: High confidence abnormality detected. Recommend immediate inspection!") return "\n".join(recommendations) def analyze_audio(audio_input, threshold=DEFAULT_THRESHOLD): """Process audio and detect anomalies""" try: # Handle file upload if isinstance(audio_input, str): audio, sr = sf.read(audio_input) else: # Gradio file object with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp: tmp.write(audio_input.read()) tmp_path = tmp.name audio, sr = sf.read(tmp_path) os.unlink(tmp_path) # Convert to mono and resample if needed if len(audio.shape) > 1: audio = np.mean(audio, axis=1) if sr != SAMPLING_RATE: audio = librosa.resample(audio, orig_sr=sr, target_sr=SAMPLING_RATE) # Feature extraction and prediction inputs = feature_extractor(audio, sampling_rate=SAMPLING_RATE, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) probs = torch.softmax(outputs.logits, dim=-1) # Get results predicted_class = "Normal" if probs[0][0] > threshold else "Anomaly" confidence = probs[0][0].item() if predicted_class == "Normal" else 1 - probs[0][0].item() # Generate spectrogram spectrogram = librosa.feature.melspectrogram(y=audio, sr=SAMPLING_RATE, n_mels=64, fmax=8000) db_spec = librosa.power_to_db(spectrogram, ref=np.max) fig, ax = plt.subplots(figsize=(10, 4)) librosa.display.specshow(db_spec, x_axis='time', y_axis='mel', sr=SAMPLING_RATE, fmax=8000, ax=ax) plt.colorbar(format='%+2.0f dB') plt.title('Mel Spectrogram with Anomaly Detection') # Mark anomalies on plot if predicted_class == "Anomaly": plt.text(0.5, 0.9, 'ANOMALY DETECTED', color='red', ha='center', va='center', transform=ax.transAxes, fontsize=14, bbox=dict(facecolor='white', alpha=0.8)) spec_path = os.path.join(tempfile.gettempdir(), 'spec.png') plt.savefig(spec_path, bbox_inches='tight') plt.close() # Generate detailed recommendations recommendations = generate_recommendation(predicted_class, confidence, audio, SAMPLING_RATE) return ( predicted_class, f"{confidence:.1%}", spec_path, recommendations ) except Exception as e: return f"Error: {str(e)}", "", None, "" # Gradio Interface with gr.Blocks(title="Industrial Diagnostic Assistant šŸ‘Øā€šŸ”§", theme=gr.themes.Soft()) as demo: gr.Markdown(""" # šŸ­ Industrial Equipment Diagnostic Assistant ## Acoustic Anomaly Detection & Maintenance Recommendation System """) with gr.Row(): with gr.Column(): audio_input = gr.Audio( label="Upload Equipment Recording (.wav)", type="filepath", source="upload" ) threshold = gr.Slider( minimum=0.5, maximum=0.95, step=0.05, value=DEFAULT_THRESHOLD, label="Detection Sensitivity", interactive=True ) analyze_btn = gr.Button("šŸ” Analyze & Diagnose", variant="primary") with gr.Column(): result_label = gr.Label(label="Diagnosis Result") confidence = gr.Textbox(label="Confidence Score") spectrogram = gr.Image(label="Acoustic Analysis") recommendations = gr.Textbox( label="Maintenance Recommendations", lines=10, interactive=False ) analyze_btn.click( fn=analyze_audio, inputs=[audio_input, threshold], outputs=[result_label, confidence, spectrogram, recommendations] ) gr.Markdown(""" ### System Capabilities: - Automatic anomaly detection in industrial equipment sounds - Frequency pattern analysis to identify failure modes - Equipment-specific maintenance recommendations - Confidence-based urgency classification **Tip:** For best results, use 5-10 second recordings of steady operation """) if __name__ == "__main__": demo.launch()