yzhuang commited on
Commit
a846510
·
1 Parent(s): cebb815
Files changed (3) hide show
  1. app.py +43 -51
  2. requirements.txt +3 -1
  3. server.py +34 -0
app.py CHANGED
@@ -1,64 +1,56 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
27
 
28
- response = ""
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
41
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
 
1
  import gradio as gr
2
+ import requests
3
+ import os
4
+ import spaces
5
 
6
+ from server import setup_mixinputs, launch_vllm_server
 
 
 
7
 
8
+ API_URL = "http://localhost:8000/v1/chat/completions"
9
 
10
+ @spaces.GPU(duration=120)
11
+ def chat_with_moi(message, history, temperature, top_p, beta):
12
+ # Set the MIXINPUTS_BETA env var *per request*
13
+ os.environ["MIXINPUTS_BETA"] = str(beta)
 
 
 
 
 
14
 
15
+ setup_mixinputs()
16
+ launch_vllm_server(beta=beta)
 
 
 
17
 
18
+ payload = {
19
+ "model": "Qwen/QwQ-32B", # match what your vLLM server expects
20
+ "messages": [{"role": "user", "content": message}],
21
+ "temperature": temperature,
22
+ "top_p": top_p,
23
+ "max_tokens": 512,
24
+ }
25
 
26
+ try:
27
+ response = requests.post(API_URL, json=payload)
28
+ response.raise_for_status()
29
+ return response.json()["choices"][0]["message"]["content"]
30
+ except Exception as e:
31
+ return f"[ERROR] {str(e)}"
32
 
33
+ # Gradio UI
34
+ with gr.Blocks() as demo:
35
+ gr.Markdown("# 🧪 Mixture of Inputs (MoI) Demo with vLLM")
 
 
 
 
 
36
 
37
+ with gr.Row():
38
+ temperature = gr.Slider(0.0, 1.5, value=0.7, label="Temperature")
39
+ top_p = gr.Slider(0.0, 1.0, value=0.95, label="Top-p")
40
+ beta = gr.Slider(0.0, 10.0, value=1.0, label="MoI Beta")
41
 
42
+ chatbot = gr.Chatbot()
43
+ message = gr.Textbox(label="Your message")
44
+ send_btn = gr.Button("Send")
45
 
46
+ history = gr.State([])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
+ def respond(user_message, chat_history, temperature, top_p, beta):
49
+ reply = chat_with_moi(user_message, chat_history, temperature, top_p, beta)
50
+ chat_history = chat_history + [(user_message, reply)]
51
+ return chat_history, chat_history
52
 
53
+ send_btn.click(respond, inputs=[message, history, temperature, top_p, beta],
54
+ outputs=[chatbot, history])
55
+
56
+ demo.launch()
requirements.txt CHANGED
@@ -1 +1,3 @@
1
- huggingface_hub==0.25.2
 
 
 
1
+ huggingface_hub==0.25.2
2
+ vllm==0.8.5
3
+ mixinputs
server.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import subprocess
2
+ import threading
3
+ import os
4
+ import time
5
+
6
+ def setup_mixinputs():
7
+ # Step 1: Run mixinputs setup
8
+ subprocess.run(["mixinputs", "setup"], check=True)
9
+
10
+ def launch_vllm_server(beta=1.0):
11
+ # Step 2: Set environment variables
12
+ env = os.environ.copy()
13
+ env["MIXINPUTS_BETA"] = str(beta)
14
+ env["VLLM_USE_V1"] = "1"
15
+
16
+ # Step 3: Launch vLLM with custom options
17
+ cmd = [
18
+ "vllm", "serve",
19
+ "Qwen/QwQ-32B",
20
+ "--tensor-parallel-size", "1",
21
+ "--enforce-eager",
22
+ "--max-seq-len-to-capture", "2048",
23
+ "--max-num-seqs", "1"
24
+ ]
25
+ subprocess.run(cmd, env=env)
26
+
27
+ # Step 1: Setup
28
+ setup_mixinputs()
29
+
30
+ # Step 2: Launch vLLM server in background
31
+ threading.Thread(target=launch_vllm_server, daemon=True).start()
32
+
33
+ # Step 3: Give time for server to initialize
34
+ time.sleep(20)