Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,71 +1,153 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
|
3 |
-
import
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import gc
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
import os
|
6 |
+
|
7 |
+
# 清理内存
|
8 |
+
torch.cuda.empty_cache()
|
9 |
+
gc.collect()
|
10 |
+
|
11 |
+
# 设置环境变量
|
12 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
|
13 |
+
|
14 |
+
# 模型名称
|
15 |
+
model_name = "您的用户名/text-style-converter"
|
16 |
+
|
17 |
+
# 全局变量存储模型
|
18 |
+
tokenizer = None
|
19 |
+
model = None
|
20 |
+
|
21 |
+
def load_model():
|
22 |
+
"""延迟加载模型"""
|
23 |
+
global tokenizer, model
|
24 |
+
|
25 |
+
if tokenizer is None or model is None:
|
26 |
+
try:
|
27 |
+
print("正在加载tokenizer...")
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
29 |
+
model_name,
|
30 |
+
trust_remote_code=True,
|
31 |
+
use_fast=False # 使用慢速tokenizer减少内存
|
32 |
+
)
|
33 |
+
|
34 |
+
print("正在加载模型...")
|
35 |
+
model = AutoModelForCausalLM.from_pretrained(
|
36 |
+
model_name,
|
37 |
+
torch_dtype=torch.float16, # 使用半精度
|
38 |
+
device_map="cpu", # 强制使用CPU
|
39 |
+
low_cpu_mem_usage=True, # 启用低内存模式
|
40 |
+
trust_remote_code=True,
|
41 |
+
load_in_8bit=False, # 在CPU上不使用量化
|
42 |
+
offload_folder="./offload", # 设置offload文件夹
|
43 |
+
)
|
44 |
+
|
45 |
+
# 设置pad_token
|
46 |
+
if tokenizer.pad_token is None:
|
47 |
+
tokenizer.pad_token = tokenizer.eos_token
|
48 |
+
|
49 |
+
print("模型加载完成!")
|
50 |
+
|
51 |
+
except Exception as e:
|
52 |
+
print(f"模型加载失败: {str(e)}")
|
53 |
+
return False
|
54 |
+
|
55 |
+
return True
|
56 |
+
|
57 |
+
def convert_text_style(input_text):
|
58 |
+
"""文本风格转换函数"""
|
59 |
+
if not input_text.strip():
|
60 |
+
return "请输入要转换的文本"
|
61 |
+
|
62 |
+
# 检查模型是否加载
|
63 |
+
if not load_model():
|
64 |
+
return "模型加载失败,请稍后重试"
|
65 |
+
|
66 |
+
try:
|
67 |
+
prompt = f"""以下是一个文本风格转换任务,请将书面化、技术性的输入文本转换为自然、口语化的表达方式。
|
68 |
+
|
69 |
+
### 输入文本:
|
70 |
+
{input_text}
|
71 |
+
|
72 |
+
### 输出文本:
|
73 |
+
"""
|
74 |
+
|
75 |
+
# 编码输入
|
76 |
+
inputs = tokenizer(
|
77 |
+
prompt,
|
78 |
+
return_tensors="pt",
|
79 |
+
max_length=1024, # 限制输入长度
|
80 |
+
truncation=True,
|
81 |
+
padding=True
|
82 |
+
)
|
83 |
+
|
84 |
+
# 生成回答
|
85 |
+
with torch.no_grad(): # 不计算梯度节省内存
|
86 |
+
outputs = model.generate(
|
87 |
+
inputs.input_ids,
|
88 |
+
attention_mask=inputs.attention_mask,
|
89 |
+
max_new_tokens=300, # 减少生成长度
|
90 |
+
temperature=0.7,
|
91 |
+
do_sample=True,
|
92 |
+
pad_token_id=tokenizer.eos_token_id,
|
93 |
+
eos_token_id=tokenizer.eos_token_id,
|
94 |
+
num_return_sequences=1,
|
95 |
+
no_repeat_ngram_size=2
|
96 |
+
)
|
97 |
+
|
98 |
+
# 解码输出
|
99 |
+
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
100 |
+
|
101 |
+
# 提取生成的部分
|
102 |
+
if "### 输出文本:" in full_response:
|
103 |
+
response = full_response.split("### 输出文本:")[-1].strip()
|
104 |
+
else:
|
105 |
+
response = full_response[len(prompt):].strip()
|
106 |
+
|
107 |
+
# 清理内存
|
108 |
+
del inputs, outputs
|
109 |
+
torch.cuda.empty_cache()
|
110 |
+
gc.collect()
|
111 |
+
|
112 |
+
return response if response else "抱歉,未能生成有效回答"
|
113 |
+
|
114 |
+
except Exception as e:
|
115 |
+
return f"生成过程中出现错误: {str(e)}"
|
116 |
+
|
117 |
+
# 创建Gradio接口
|
118 |
+
def create_interface():
|
119 |
+
iface = gr.Interface(
|
120 |
+
fn=convert_text_style,
|
121 |
+
inputs=gr.Textbox(
|
122 |
+
label="输入文本",
|
123 |
+
placeholder="请输入需要转换为口语化的书面文本...",
|
124 |
+
lines=3
|
125 |
+
),
|
126 |
+
outputs=gr.Textbox(
|
127 |
+
label="输出文本",
|
128 |
+
lines=3
|
129 |
+
),
|
130 |
+
title="中文文本风格转换API",
|
131 |
+
description="将书面化、技术性文本转换为自然、口语化表达",
|
132 |
+
examples=[
|
133 |
+
["乙醇的检测方法包括酸碱度检查。"],
|
134 |
+
["本品为薄膜衣片,除去包衣后显橙红色。"]
|
135 |
+
],
|
136 |
+
cache_examples=False, # 不缓存示例
|
137 |
+
allow_flagging="never" # 禁用标记功能
|
138 |
+
)
|
139 |
+
|
140 |
+
return iface
|
141 |
+
|
142 |
+
# 启动应用
|
143 |
+
if __name__ == "__main__":
|
144 |
+
print("正在启动应用...")
|
145 |
+
iface = create_interface()
|
146 |
+
iface.launch(
|
147 |
+
server_name="0.0.0.0",
|
148 |
+
server_port=7860,
|
149 |
+
share=False,
|
150 |
+
debug=False,
|
151 |
+
enable_queue=True,
|
152 |
+
max_threads=1 # 限制线程数
|
153 |
+
)
|