yuvraj-yadav commited on
Commit
1a2993b
·
verified ·
1 Parent(s): fbdd507

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +63 -52
app.py CHANGED
@@ -1,64 +1,75 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
27
 
28
- response = ""
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
41
 
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import openai
3
+ import pandas as pd
4
+ import os
5
 
6
+ openai.api_key = os.getenv("OPENAI_API_KEY") # Add this in the HF Secrets tab
7
+
8
+ # 🔍 Prompt Generator
9
+ def generate_prompt(question, solution, instructions):
10
+ return f"""
11
+ {instructions}
12
+
13
+ ---
14
+
15
+ Question:
16
+ {question}
17
+
18
+ Student's Solution:
19
+ {solution}
20
+
21
+ Evaluate the student's solution and provide feedback.
22
+
23
+ End your response with:
24
+ Is the solution correct? [Yes/No]
25
  """
 
 
 
26
 
27
+ # 🧠 Evaluation Function
28
+ def evaluate_csv(file, instructions):
29
+ df = pd.read_csv(file.name)
30
+ feedback_list = []
31
+ status_list = []
32
 
33
+ for idx, row in df.iterrows():
34
+ q = row['question']
35
+ s = row['solution']
36
+ prompt = generate_prompt(q, s, instructions)
 
 
 
 
 
37
 
38
+ try:
39
+ response = openai.ChatCompletion.create(
40
+ model="gpt-4", # or gpt-3.5-turbo
41
+ messages=[{"role": "user", "content": prompt}],
42
+ temperature=0.2
43
+ )
44
+ output = response.choices[0].message.content
45
+ feedback_list.append(output)
46
 
47
+ # Extract Yes/No from output
48
+ status = "Yes" if "Yes" in output.splitlines()[-1] else "No"
49
+ status_list.append(status)
50
 
51
+ except Exception as e:
52
+ feedback_list.append(f"Error: {e}")
53
+ status_list.append("Error")
54
 
55
+ df['AI_Feedback'] = feedback_list
56
+ df['Is_Correct'] = status_list
 
 
 
 
 
 
57
 
58
+ output_path = "evaluated_output.csv"
59
+ df.to_csv(output_path, index=False)
60
+ return output_path
61
 
62
+ # 🎛️ Gradio UI
63
+ with gr.Blocks() as demo:
64
+ gr.Markdown("# 📊 Solution Evaluator (CSV)")
65
+ gr.Markdown("Upload your CSV with `question` and `solution` columns. Provide evaluation instructions.")
66
+ with gr.Row():
67
+ csv_input = gr.File(label="Upload CSV", file_types=[".csv"])
68
+ instructions_input = gr.Textbox(lines=6, label="Evaluation Instructions")
69
+ output_file = gr.File(label="Download Evaluated CSV")
70
 
71
+ run_btn = gr.Button("Evaluate Solutions")
72
+
73
+ run_btn.click(fn=evaluate_csv, inputs=[csv_input, instructions_input], outputs=output_file)
74
+
75
+ demo.launch()