Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,35 +11,43 @@ processor = TrOCRProcessor.from_pretrained('microsoft/trocr-base-handwritten')
|
|
11 |
trocr_model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-base-handwritten')
|
12 |
|
13 |
def recognize_handwritten_text(image):
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
if not outputs or "boxes" not in outputs[0]:
|
21 |
-
return Image.fromarray(processed_image), "No text detected"
|
22 |
-
|
23 |
-
boxes = outputs[0]["boxes"]
|
24 |
-
pil_image = Image.fromarray(processed_image)
|
25 |
-
texts = []
|
26 |
-
|
27 |
-
# Recognize text in each detected region
|
28 |
-
for box in boxes:
|
29 |
-
x_min, y_min, x_max, y_max = box[0][0], box[0][1], box[2][0], box[2][1]
|
30 |
-
crop = pil_image.crop((x_min, y_min, x_max, y_max))
|
31 |
-
pixel_values = processor(images=crop, return_tensors="pt").pixel_values
|
32 |
-
generated_ids = trocr_model.generate(pixel_values)
|
33 |
-
text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
34 |
-
texts.append(text)
|
35 |
-
|
36 |
-
# Draw boxes on the image
|
37 |
-
result_image = draw_boxes(processed_image, boxes)
|
38 |
-
result_pil = Image.fromarray(result_image)
|
39 |
-
|
40 |
-
# Join recognized texts
|
41 |
-
text_data = " ".join(texts) if texts else "No text recognized"
|
42 |
-
return result_pil, f"Recognized text: {text_data}"
|
43 |
|
44 |
# Create Gradio interface
|
45 |
interface = gr.Interface(
|
|
|
11 |
trocr_model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-base-handwritten')
|
12 |
|
13 |
def recognize_handwritten_text(image):
|
14 |
+
try:
|
15 |
+
# Ensure image is a PIL image and convert to NumPy array
|
16 |
+
if not isinstance(image, Image.Image):
|
17 |
+
image = Image.fromarray(np.array(image)).convert("RGB")
|
18 |
+
image_np = np.array(image)
|
19 |
+
|
20 |
+
# Load image with hezar utils
|
21 |
+
processed_image = load_image(image_np)
|
22 |
+
|
23 |
+
# Detect text regions with CRAFT
|
24 |
+
outputs = craft_model.predict(processed_image)
|
25 |
+
if not outputs or "boxes" not in outputs[0]:
|
26 |
+
return Image.fromarray(processed_image), "No text detected"
|
27 |
+
|
28 |
+
boxes = outputs[0]["boxes"]
|
29 |
+
pil_image = Image.fromarray(processed_image)
|
30 |
+
texts = []
|
31 |
+
|
32 |
+
# Recognize text in each detected region
|
33 |
+
for box in boxes:
|
34 |
+
x_min, y_min, x_max, y_max = box[0][0], box[0][1], box[2][0], box[2][1]
|
35 |
+
crop = pil_image.crop((x_min, y_min, x_max, y_max))
|
36 |
+
pixel_values = processor(images=crop, return_tensors="pt").pixel_values
|
37 |
+
generated_ids = trocr_model.generate(pixel_values)
|
38 |
+
text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
39 |
+
texts.append(text)
|
40 |
+
|
41 |
+
# Draw boxes on the image
|
42 |
+
result_image = draw_boxes(processed_image, boxes)
|
43 |
+
result_pil = Image.fromarray(result_image)
|
44 |
+
|
45 |
+
# Join recognized texts
|
46 |
+
text_data = " ".join(texts) if texts else "No text recognized"
|
47 |
+
return result_pil, f"Recognized text: {text_data}"
|
48 |
|
49 |
+
except Exception as e:
|
50 |
+
return Image.fromarray(image_np), f"Error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
# Create Gradio interface
|
53 |
interface = gr.Interface(
|