from flask import Flask, request, jsonify from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline import os local_path = "./models/roberta-large" os.environ["HF_HOME"] = "/app/hf_home" os.environ["TRANSFORMERS_CACHE"] = "/app/cache" # 병행 사용 가능 model_id = "klue/roberta-large" if os.path.exists(local_path): print("🔄 모델 로컬에서 로드 중...") model = AutoModelForSequenceClassification.from_pretrained(local_path) tokenizer = AutoTokenizer.from_pretrained(local_path) else: print("⬇️ 모델 허깅페이스에서 다운로드 중...") model = AutoModelForSequenceClassification.from_pretrained( model_id, cache_dir=os.environ["HF_HOME"] ) tokenizer = AutoTokenizer.from_pretrained(model_id, cache_dir=os.environ["HF_HOME"]) os.makedirs(local_path, exist_ok=True) model.save_pretrained(local_path) tokenizer.save_pretrained(local_path) app = Flask(__name__) print("🔄 모델 로드 완료") @app.route("/generate", methods=["GET"]) def generate(): return jsonify({"result": "generate/get"}) @app.route("/generate", methods=["POST"]) def generate_post(): data = request.json print(data) return jsonify({"result": "generate/post"}) @app.route("/", methods=["GET"]) def index(): return jsonify({"result": "success"}) if __name__ == "__main__": app.run(host="0.0.0.0", port=7860)