yuni0725
commited on
Commit
Β·
f80395f
1
Parent(s):
16b19c9
init3
Browse files- Dockerfile +7 -6
- main.py +9 -2
Dockerfile
CHANGED
@@ -3,16 +3,17 @@ FROM python:3.11-slim
|
|
3 |
WORKDIR /app
|
4 |
|
5 |
ENV TRANSFORMERS_CACHE=/app/cache
|
|
|
6 |
|
7 |
-
|
|
|
|
|
8 |
|
9 |
-
RUN pip install --no-cache-dir -r requirements.txt
|
10 |
|
11 |
-
COPY
|
|
|
12 |
|
13 |
-
|
14 |
-
RUN mkdir -p /app/cache
|
15 |
|
16 |
EXPOSE 7860
|
17 |
-
|
18 |
CMD ["python", "main.py"]
|
|
|
3 |
WORKDIR /app
|
4 |
|
5 |
ENV TRANSFORMERS_CACHE=/app/cache
|
6 |
+
ENV HF_HOME=/app/hf_home
|
7 |
|
8 |
+
# μΊμ ν΄λ μμ± + κΆν λΆμ¬
|
9 |
+
RUN mkdir -p /app/cache && chmod -R 777 /app/cache
|
10 |
+
RUN mkdir -p /app/hf_home && chmod -R 777 /app/hf_home
|
11 |
|
|
|
12 |
|
13 |
+
COPY requirements.txt .
|
14 |
+
RUN pip install -r requirements.txt
|
15 |
|
16 |
+
COPY main.py .
|
|
|
17 |
|
18 |
EXPOSE 7860
|
|
|
19 |
CMD ["python", "main.py"]
|
main.py
CHANGED
@@ -4,6 +4,9 @@ import os
|
|
4 |
|
5 |
local_path = "./models/roberta-large"
|
6 |
|
|
|
|
|
|
|
7 |
model_id = "klue/roberta-large"
|
8 |
|
9 |
if os.path.exists(local_path):
|
@@ -12,14 +15,18 @@ if os.path.exists(local_path):
|
|
12 |
tokenizer = AutoTokenizer.from_pretrained(local_path)
|
13 |
else:
|
14 |
print("β¬οΈ λͺ¨λΈ νκΉ
νμ΄μ€μμ λ€μ΄λ‘λ μ€...")
|
15 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
16 |
-
|
|
|
|
|
17 |
os.makedirs(local_path, exist_ok=True)
|
18 |
model.save_pretrained(local_path)
|
19 |
tokenizer.save_pretrained(local_path)
|
20 |
|
21 |
app = Flask(__name__)
|
22 |
|
|
|
|
|
23 |
|
24 |
@app.route("/generate", methods=["POST"])
|
25 |
def generate():
|
|
|
4 |
|
5 |
local_path = "./models/roberta-large"
|
6 |
|
7 |
+
os.environ["HF_HOME"] = "/app/hf_home"
|
8 |
+
os.environ["TRANSFORMERS_CACHE"] = "/app/cache" # λ³ν μ¬μ© κ°λ₯
|
9 |
+
|
10 |
model_id = "klue/roberta-large"
|
11 |
|
12 |
if os.path.exists(local_path):
|
|
|
15 |
tokenizer = AutoTokenizer.from_pretrained(local_path)
|
16 |
else:
|
17 |
print("β¬οΈ λͺ¨λΈ νκΉ
νμ΄μ€μμ λ€μ΄λ‘λ μ€...")
|
18 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
19 |
+
model_id, cache_dir=os.environ["HF_HOME"]
|
20 |
+
)
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, cache_dir=os.environ["HF_HOME"])
|
22 |
os.makedirs(local_path, exist_ok=True)
|
23 |
model.save_pretrained(local_path)
|
24 |
tokenizer.save_pretrained(local_path)
|
25 |
|
26 |
app = Flask(__name__)
|
27 |
|
28 |
+
print("π λͺ¨λΈ λ‘λ μλ£")
|
29 |
+
|
30 |
|
31 |
@app.route("/generate", methods=["POST"])
|
32 |
def generate():
|