demo / backend /tasks /create_bench.py
tfrere's picture
translate some comments in english
3964afa
"""
Task to ingest and transform documents to markdown using yourbench
"""
import os
import time
import pathlib
import subprocess
import threading
from typing import Optional, List, Tuple, Dict, Any
import yaml
from loguru import logger
class CreateBenchTask:
"""
Task to ingest and transform documents to markdown using yourbench
"""
def __init__(self, session_uid: str, config_path: Optional[str] = None):
"""
Initialize the ingestion task
Args:
session_uid: Session ID for this task
config_path: Path to the configuration file, will be generated if None
"""
self.session_uid = session_uid
self.logs: List[str] = []
self.is_completed = False
self.process = None
self.is_running_flag = threading.Event()
# Default config path if not provided
if config_path is None:
config_path = f"uploaded_files/{session_uid}/config.yml"
self.config_path = config_path
# Command to run yourbench - modified to avoid error with uv run
self.command = ["yourbench", "run", "--config", str(self.config_path)]
self._add_log("[INFO] Initializing ingestion task")
self._add_log(f"[INFO] Using configuration file: {self.config_path}")
def _add_log(self, message: str) -> None:
"""
Add a log message to the logs list
Args:
message: Log message to add
"""
if message not in self.logs: # Avoid duplicates
self.logs.append(message)
# Force copy of the list to avoid reference problems
self.logs = self.logs.copy()
# Log to system logs
logger.info(f"[{self.session_uid}] {message}")
def get_logs(self) -> List[str]:
"""
Get all logs for this task
Returns:
List of log messages
"""
return self.logs.copy() # Return a copy to avoid reference problems
def is_task_completed(self) -> bool:
"""
Check if the task is completed
Returns:
True if completed, False otherwise
"""
return self.is_completed
def is_running(self) -> bool:
"""
Check if the process is running
Returns:
True if running, False otherwise
"""
return self.is_running_flag.is_set()
def stop(self) -> None:
"""
Stop the process if it's running
"""
if self.process and self.is_running():
self._add_log("[INFO] Stopping ingestion process")
try:
self.process.terminate()
# Wait 5 seconds for termination
self.process.wait(timeout=5)
except subprocess.TimeoutExpired:
self._add_log("[WARN] Process not responding, forcing termination")
self.process.kill()
finally:
self.is_running_flag.clear()
self.is_completed = True
self._add_log("[INFO] Ingestion process stopped")
def _capture_output(self) -> None:
"""
Capture and process the output from the yourbench process
"""
self._add_log("[INFO] Starting output capture")
# Flag to detect rate limiting errors
rate_limit_detected = False
# Flag to detect non-critical JSON errors
json_errors_detected = False
try:
while self.is_running() and self.process:
line = self.process.stdout.readline()
if not line:
# If no line is read and the process is no longer running
if self.process.poll() is not None:
self.is_running_flag.clear()
break
# Otherwise, wait a bit and continue
time.sleep(0.1)
continue
# Process the output line
line = line.strip()
if line:
# Detect rate limiting errors
if ("too many requests" in line.lower() or
"rate limit" in line.lower() or
"429" in line or
"too many concurrent requests" in line.lower()):
rate_limit_detected = True
self._add_log("[ERROR] RATE_LIMIT_EXCEEDED: The demo is under heavy load at the moment.")
# Detect non-critical JSON errors
if ("JSONDecodeError" in line or
"Error processing QA pair" in line or
"'str' object has no attribute 'get'" in line):
json_errors_detected = True
# Do not mark them as errors but as warnings
self._add_log(f"[WARN] Non-critical JSON error: {line}")
continue # Skip to next line
# Log raw output for debugging
self._add_log(f"[DEBUG] Raw output: {line}")
# Filter and format the line as needed
if "ERROR" in line:
self._add_log(f"[ERROR] {line}")
elif "WARNING" in line:
self._add_log(f"[WARN] {line}")
# Detect specific warning about no valid questions
if "No valid questions produced in single_shot_question_generation" in line:
self._add_log("[ERROR] Failed to generate benchmark: The document does not contain enough information to generate a meaningful benchmark. Please try with a more detailed document.")
else:
# Detect completed stages
if "Completed stage:" in line:
# Extract step name
stage = line.split("'")[1] if "'" in line else line.split("Completed stage:")[1].strip()
# Standardize step names to match frontend
stage = self._standardize_stage_name(stage)
self._add_log(f"[SUCCESS] Stage completed: {stage}")
# Specifically check completion of upload_ingest_to_hub step
elif "Successfully completed 'upload_ingest_to_hub' stage" in line:
self._add_log(f"[SUCCESS] Stage completed: upload_ingest_to_hub")
else:
self._add_log(f"[INFO] {line}")
# Check exit code once the process is finished
if self.process:
exit_code = self.process.poll()
if exit_code == 0 or json_errors_detected:
# Consider process successful even with JSON errors
if json_errors_detected:
self._add_log("[INFO] Benchmark completed with non-critical JSON errors, considered successful")
else:
self._add_log("[SUCCESS] Benchmark process completed successfully")
else:
# If a rate limiting error was detected, display a specific message
if rate_limit_detected:
self._add_log("[ERROR] Benchmark process failed due to API rate limiting. The demo is under heavy load at the moment.")
# Do not add success message in case of exception
self._add_log("[INFO] Benchmark process completed with errors")
except Exception as e:
self._add_log(f"[ERROR] Error during output capture: {str(e)}")
# Do not add success message in case of exception
finally:
self.is_completed = True
self.is_running_flag.clear()
self._add_log("[INFO] Output capture completed")
def _standardize_stage_name(self, stage_name: str) -> str:
"""
Standardize the stage name to match the frontend expectations
Args:
stage_name: Original stage name
Returns:
Standardized stage name
"""
# Mapping table for step names
# Add necessary mappings here
# example: "original_name": "standardized_name"
stage_mapping = {
"ingest": "ingestion",
"upload": "upload_ingest_to_hub",
"summarize": "summarization",
"chunk": "chunking",
"generate_questions": "single_shot_question_generation",
}
# Look for partial matches
for key, value in stage_mapping.items():
if key in stage_name.lower():
return value
# If no match is found, return original name
return stage_name
def run(self, token: Optional[str] = None) -> None:
"""
Run the ingestion task
Args:
token: Hugging Face token
"""
try:
self._add_log("[INFO] Starting ingestion process")
# Check if the configuration file exists
if not os.path.exists(self.config_path):
raise FileNotFoundError(f"Configuration file does not exist: {self.config_path}")
# Examine the configuration to get information
try:
with open(self.config_path, 'r') as f:
config_yaml = yaml.safe_load(f)
# Get source and destination paths
source_dir = config_yaml.get("pipeline", {}).get("ingestion", {}).get("source_documents_dir", "")
output_dir = config_yaml.get("pipeline", {}).get("ingestion", {}).get("output_dir", "")
if source_dir:
self._add_log(f"[INFO] Source directory: {source_dir}")
if output_dir:
self._add_log(f"[INFO] Output directory: {output_dir}")
# List files to process if the directory exists
if source_dir and os.path.exists(source_dir):
files = os.listdir(source_dir)
if files:
self._add_log(f"[INFO] Files to process: {', '.join(files)}")
else:
self._add_log("[WARN] No files found in source directory")
except Exception as e:
self._add_log(f"[WARN] Unable to read configuration: {str(e)}")
# Environment preparation
env = os.environ.copy()
# Explicitly define environment variables for authentication
hf_token = os.getenv("HF_TOKEN")
if hf_token:
# Explicitly export these variables for yourbench
env["HF_TOKEN"] = hf_token
env["HUGGING_FACE_HUB_TOKEN"] = hf_token
env["HF_ORGANIZATION"] = os.getenv("HF_ORGANIZATION", "yourbench")
self._add_log("[INFO] Environment variables exported")
# Start the process
self._add_log(f"[INFO] Executing command: {' '.join(self.command)}")
self.process = subprocess.Popen(
self.command,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
bufsize=1,
universal_newlines=True,
env=env
)
# Mark the process as running
self.is_running_flag.set()
# Start a thread to capture output
output_thread = threading.Thread(target=self._capture_output)
output_thread.daemon = True
output_thread.start()
self._add_log(f"[INFO] Process started with PID: {self.process.pid}")
except Exception as e:
self._add_log(f"[ERROR] Error starting ingestion process: {str(e)}")
self.is_completed = True