Spaces:
Running
Running
Yoad
commited on
Commit
·
7b3ae60
1
Parent(s):
abf28c9
Add subs visualizer
Browse files- src/app.py +23 -16
- src/substitutions_visualizer.py +101 -0
- src/visual_eval/evaluator.py +149 -17
src/app.py
CHANGED
@@ -12,6 +12,7 @@ from huggingface_hub import HfFileSystem
|
|
12 |
from st_fixed_container import st_fixed_container
|
13 |
from visual_eval.evaluator import HebrewTextNormalizer
|
14 |
from visual_eval.visualization import render_visualize_jiwer_result_html
|
|
|
15 |
|
16 |
HF_API_TOKEN = None
|
17 |
try:
|
@@ -377,6 +378,8 @@ def main():
|
|
377 |
|
378 |
# Toggle for normalized vs raw text
|
379 |
use_normalized = st.sidebar.toggle("Use normalized text", value=True)
|
|
|
|
|
380 |
|
381 |
# Create sidebar for entry selection
|
382 |
st.sidebar.header("Select Entry")
|
@@ -495,22 +498,26 @@ def main():
|
|
495 |
html = render_visualize_jiwer_result_html(ref, hyp)
|
496 |
display_rtl(html)
|
497 |
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
|
|
|
|
|
|
|
|
514 |
|
515 |
# If we have audio URL, display it in the sticky container
|
516 |
if "audio_url" in locals() and audio_url:
|
|
|
12 |
from st_fixed_container import st_fixed_container
|
13 |
from visual_eval.evaluator import HebrewTextNormalizer
|
14 |
from visual_eval.visualization import render_visualize_jiwer_result_html
|
15 |
+
from substitutions_visualizer import visualize_substitutions
|
16 |
|
17 |
HF_API_TOKEN = None
|
18 |
try:
|
|
|
378 |
|
379 |
# Toggle for normalized vs raw text
|
380 |
use_normalized = st.sidebar.toggle("Use normalized text", value=True)
|
381 |
+
show_metadata = st.sidebar.toggle("Show entry metadata", value=False)
|
382 |
+
visualize_subs = st.sidebar.toggle("List Substitutions", value=False)
|
383 |
|
384 |
# Create sidebar for entry selection
|
385 |
st.sidebar.header("Select Entry")
|
|
|
498 |
html = render_visualize_jiwer_result_html(ref, hyp)
|
499 |
display_rtl(html)
|
500 |
|
501 |
+
if show_metadata:
|
502 |
+
# Display metadata
|
503 |
+
st.header("Metadata")
|
504 |
+
metadata_cols = [
|
505 |
+
"metadata_uuid",
|
506 |
+
"model",
|
507 |
+
"dataset",
|
508 |
+
"dataset_split",
|
509 |
+
"engine",
|
510 |
+
]
|
511 |
+
metadata = eval_results.iloc[selected_entry][metadata_cols]
|
512 |
+
|
513 |
+
# Create a DataFrame for better display
|
514 |
+
metadata_df = pd.DataFrame(
|
515 |
+
{"Field": metadata_cols, "Value": [str(v) for v in metadata.values]}
|
516 |
+
)
|
517 |
+
st.table(metadata_df)
|
518 |
+
|
519 |
+
if visualize_subs:
|
520 |
+
visualize_substitutions(ref, hyp)
|
521 |
|
522 |
# If we have audio URL, display it in the sticky container
|
523 |
if "audio_url" in locals() and audio_url:
|
src/substitutions_visualizer.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import streamlit as st
|
3 |
+
from jiwer import process_words
|
4 |
+
|
5 |
+
from visual_eval.evaluator import extract_substitution_samples, HebrewTextNormalizer
|
6 |
+
|
7 |
+
subs_table_styles = """
|
8 |
+
<style>
|
9 |
+
.sub-table {
|
10 |
+
background: white;
|
11 |
+
width: 100%;
|
12 |
+
border-collapse: collapse;
|
13 |
+
color: black;
|
14 |
+
}
|
15 |
+
.sub-row {
|
16 |
+
cursor: pointer;
|
17 |
+
transition: all 0.2s;
|
18 |
+
}
|
19 |
+
.sub-row .txt {
|
20 |
+
text-align: center;
|
21 |
+
}
|
22 |
+
.sub-row:nth-child(even):hover {
|
23 |
+
background: #eee;
|
24 |
+
}
|
25 |
+
.sub-row:nth-child(odd):hover {
|
26 |
+
background: #eee;
|
27 |
+
}
|
28 |
+
.sub-row:nth-child(even):hover + .sub-row {
|
29 |
+
background: #eee;
|
30 |
+
}
|
31 |
+
.sub-row:nth-child(even):has(+ .sub-row:hover) {
|
32 |
+
background: #eee;
|
33 |
+
}
|
34 |
+
.sub-row.ref {
|
35 |
+
color: green;
|
36 |
+
}
|
37 |
+
.sub-row.ref .ctx {
|
38 |
+
text-align: end;
|
39 |
+
}
|
40 |
+
.sub-row.hyp {
|
41 |
+
color: red;
|
42 |
+
border-bottom: 1px solid black;
|
43 |
+
}
|
44 |
+
.sub-row.hyp .ctx {
|
45 |
+
text-align: start;
|
46 |
+
}
|
47 |
+
</style>
|
48 |
+
"""
|
49 |
+
|
50 |
+
|
51 |
+
@st.cache_data
|
52 |
+
def visualize_substitutions(ref, hyp):
|
53 |
+
norm = HebrewTextNormalizer()
|
54 |
+
wer_word_output = process_words(norm(ref), norm(hyp))
|
55 |
+
subs_rows = []
|
56 |
+
for sample in extract_substitution_samples(wer_word_output):
|
57 |
+
subs_rows.append(
|
58 |
+
{
|
59 |
+
"ref": " ".join(sample.ref),
|
60 |
+
"hyp": " ".join(sample.hyp),
|
61 |
+
"hyp_ctx": " ".join(
|
62 |
+
wer_word_output.hypotheses[0][slice(*sample.hyp_context_span)]
|
63 |
+
),
|
64 |
+
"ref_ctx": " ".join(
|
65 |
+
wer_word_output.references[0][slice(*sample.ref_context_span)]
|
66 |
+
),
|
67 |
+
}
|
68 |
+
)
|
69 |
+
|
70 |
+
sub_rows_html = []
|
71 |
+
for row in subs_rows:
|
72 |
+
sub_rows_html.append(
|
73 |
+
f"""
|
74 |
+
<tr class="sub-row ref">
|
75 |
+
<td class="ctx">{row['ref_ctx']}</td>
|
76 |
+
<td class="txt">{row['ref']}</td>
|
77 |
+
<td></td>
|
78 |
+
</tr>
|
79 |
+
<tr class="sub-row hyp">
|
80 |
+
<td></td>
|
81 |
+
<td class="txt">{row['hyp']}</td>
|
82 |
+
<td class="ctx">{row['hyp_ctx']}</td>
|
83 |
+
</tr>
|
84 |
+
"""
|
85 |
+
)
|
86 |
+
|
87 |
+
st.subheader("Substitutions List")
|
88 |
+
|
89 |
+
table_html = f"""
|
90 |
+
{subs_table_styles}
|
91 |
+
<table class="sub-table" dir="rtl" lang="he">
|
92 |
+
<tr>
|
93 |
+
<th style="text-align: end;">Ref Context</th>
|
94 |
+
<th style="text-align: center;">Ref/Hyp</th>
|
95 |
+
<th style="text-align: start;">Hyp Context</th>
|
96 |
+
</tr>
|
97 |
+
{"".join(sub_rows_html)}
|
98 |
+
</table>
|
99 |
+
"""
|
100 |
+
|
101 |
+
st.html(table_html)
|
src/visual_eval/evaluator.py
CHANGED
@@ -1,23 +1,9 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
Provides functions to evaluate a given model on a dataset sample using the Faster Whisper model,
|
4 |
-
and generate HTML visualization blocks of the word alignment.
|
5 |
-
"""
|
6 |
-
|
7 |
-
import concurrent.futures
|
8 |
-
import gc
|
9 |
-
import io
|
10 |
-
import queue
|
11 |
-
import threading
|
12 |
-
from typing import Dict, Generator, List
|
13 |
-
|
14 |
-
import soundfile as sf
|
15 |
from hebrew import Hebrew
|
16 |
-
from
|
17 |
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
|
18 |
|
19 |
-
from visual_eval.visualization import render_visualize_jiwer_result_html
|
20 |
-
|
21 |
|
22 |
class HebrewTextNormalizer(BasicTextNormalizer):
|
23 |
def __init__(self, *args, **kwargs):
|
@@ -54,3 +40,149 @@ class HebrewTextNormalizer(BasicTextNormalizer):
|
|
54 |
text = self.__remove_quotes(text)
|
55 |
text = super().__call__(text)
|
56 |
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from hebrew import Hebrew
|
4 |
+
from jiwer import process_words
|
5 |
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
|
6 |
|
|
|
|
|
7 |
|
8 |
class HebrewTextNormalizer(BasicTextNormalizer):
|
9 |
def __init__(self, *args, **kwargs):
|
|
|
40 |
text = self.__remove_quotes(text)
|
41 |
text = super().__call__(text)
|
42 |
return text
|
43 |
+
|
44 |
+
|
45 |
+
context_expansion_size = 4
|
46 |
+
|
47 |
+
|
48 |
+
@dataclass
|
49 |
+
class SubsSample:
|
50 |
+
ref_context_span: tuple[int, int]
|
51 |
+
hyp_context_span: tuple[int, int]
|
52 |
+
ref: list[str]
|
53 |
+
hyp: list[str]
|
54 |
+
|
55 |
+
|
56 |
+
def merge_spans(span1, span2):
|
57 |
+
return (min(span1[0], span2[0]), max(span1[1], span2[1]))
|
58 |
+
|
59 |
+
|
60 |
+
def merge_sub_samples(sub_samples: list[SubsSample]):
|
61 |
+
merged_sample = None
|
62 |
+
for sample in sub_samples:
|
63 |
+
if not merged_sample:
|
64 |
+
merged_sample = sample
|
65 |
+
continue
|
66 |
+
merged_sample = SubsSample(
|
67 |
+
ref_context_span=merge_spans(
|
68 |
+
merged_sample.ref_context_span, sample.ref_context_span
|
69 |
+
),
|
70 |
+
hyp_context_span=merge_spans(
|
71 |
+
merged_sample.hyp_context_span, sample.hyp_context_span
|
72 |
+
),
|
73 |
+
ref=merged_sample.ref + sample.ref,
|
74 |
+
hyp=merged_sample.hyp + sample.hyp,
|
75 |
+
)
|
76 |
+
return merged_sample
|
77 |
+
|
78 |
+
|
79 |
+
def get_aligned_chunk_words(wer_word_output, chunk):
|
80 |
+
ref_words = None
|
81 |
+
hyp_words = None
|
82 |
+
ref_context_span = [
|
83 |
+
max(0, chunk.ref_start_idx - context_expansion_size),
|
84 |
+
min(
|
85 |
+
chunk.ref_end_idx + context_expansion_size,
|
86 |
+
len(wer_word_output.references[0]),
|
87 |
+
),
|
88 |
+
]
|
89 |
+
hyp_context_span = [
|
90 |
+
max(0, chunk.hyp_start_idx - context_expansion_size),
|
91 |
+
min(
|
92 |
+
chunk.hyp_end_idx + context_expansion_size,
|
93 |
+
len(wer_word_output.hypotheses[0]),
|
94 |
+
),
|
95 |
+
]
|
96 |
+
if chunk.type == "equal":
|
97 |
+
ref_words = wer_word_output.references[0][
|
98 |
+
chunk.ref_start_idx : chunk.ref_end_idx
|
99 |
+
]
|
100 |
+
hyp_words = wer_word_output.hypotheses[0][
|
101 |
+
chunk.hyp_start_idx : chunk.hyp_end_idx
|
102 |
+
]
|
103 |
+
elif chunk.type == "delete":
|
104 |
+
ref_words = wer_word_output.references[0][
|
105 |
+
chunk.ref_start_idx : chunk.ref_end_idx
|
106 |
+
]
|
107 |
+
hyp_words = [""] * len(ref_words)
|
108 |
+
elif chunk.type == "insert":
|
109 |
+
hyp_words = wer_word_output.hypotheses[0][
|
110 |
+
chunk.hyp_start_idx : chunk.hyp_end_idx
|
111 |
+
]
|
112 |
+
ref_words = [""] * len(hyp_words)
|
113 |
+
elif chunk.type == "substitute":
|
114 |
+
ref_words = wer_word_output.references[0][
|
115 |
+
chunk.ref_start_idx : chunk.ref_end_idx
|
116 |
+
]
|
117 |
+
hyp_words = wer_word_output.hypotheses[0][
|
118 |
+
chunk.hyp_start_idx : chunk.hyp_end_idx
|
119 |
+
]
|
120 |
+
return ref_words, hyp_words, ref_context_span, hyp_context_span
|
121 |
+
|
122 |
+
|
123 |
+
def extract_substitution_samples(wer_word_output) -> list[SubsSample]:
|
124 |
+
subs_samples = []
|
125 |
+
prev_chunk = None
|
126 |
+
all_chunks = wer_word_output.alignments[0]
|
127 |
+
for chunk, next_chunk in zip(all_chunks, all_chunks[1:] + [None]):
|
128 |
+
sample_to_store = None
|
129 |
+
|
130 |
+
if chunk.type in ["delete", "insert"]:
|
131 |
+
if prev_chunk and prev_chunk.type in ["substitute"]:
|
132 |
+
ref_words, hyp_words, ref_context_span, hyp_context_span = (
|
133 |
+
get_aligned_chunk_words(wer_word_output, prev_chunk)
|
134 |
+
)
|
135 |
+
prev_sample = SubsSample(
|
136 |
+
ref_context_span=ref_context_span,
|
137 |
+
hyp_context_span=hyp_context_span,
|
138 |
+
ref=ref_words,
|
139 |
+
hyp=hyp_words,
|
140 |
+
)
|
141 |
+
|
142 |
+
ref_words, hyp_words, ref_context_span, hyp_context_span = (
|
143 |
+
get_aligned_chunk_words(wer_word_output, chunk)
|
144 |
+
)
|
145 |
+
sample = SubsSample(
|
146 |
+
ref_context_span=ref_context_span,
|
147 |
+
hyp_context_span=hyp_context_span,
|
148 |
+
ref=ref_words,
|
149 |
+
hyp=hyp_words,
|
150 |
+
)
|
151 |
+
sample_to_store = merge_sub_samples([prev_sample, sample])
|
152 |
+
|
153 |
+
if chunk.type == "substitute":
|
154 |
+
if next_chunk and next_chunk.type in ["insert", "delete"]:
|
155 |
+
pass # allow the next chunk to capture this chunk
|
156 |
+
else:
|
157 |
+
prev_sample = None
|
158 |
+
if prev_chunk and prev_chunk.type in ["insert", "delete"]:
|
159 |
+
ref_words, hyp_words, ref_context_span, hyp_context_span = (
|
160 |
+
get_aligned_chunk_words(wer_word_output, prev_chunk)
|
161 |
+
)
|
162 |
+
prev_sample = SubsSample(
|
163 |
+
ref_context_span=ref_context_span,
|
164 |
+
hyp_context_span=hyp_context_span,
|
165 |
+
ref=ref_words,
|
166 |
+
hyp=hyp_words,
|
167 |
+
)
|
168 |
+
|
169 |
+
ref_words, hyp_words, ref_context_span, hyp_context_span = (
|
170 |
+
get_aligned_chunk_words(wer_word_output, chunk)
|
171 |
+
)
|
172 |
+
sample = SubsSample(
|
173 |
+
ref_context_span=ref_context_span,
|
174 |
+
hyp_context_span=hyp_context_span,
|
175 |
+
ref=ref_words,
|
176 |
+
hyp=hyp_words,
|
177 |
+
)
|
178 |
+
sample_to_store = (
|
179 |
+
merge_sub_samples([prev_sample, sample]) if prev_sample else sample
|
180 |
+
)
|
181 |
+
|
182 |
+
if sample_to_store:
|
183 |
+
subs_samples.append(sample_to_store)
|
184 |
+
prev_chunk = None # consume once
|
185 |
+
else:
|
186 |
+
prev_chunk = chunk
|
187 |
+
|
188 |
+
return subs_samples
|