import gradio as gr import numpy as np import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import cv2 import PIL.Image from scipy.interpolate import griddata import matplotlib.pyplot as plt def RGB2gray(rgb): r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2] gray = 0.2989 * r + 0.5870 * g + 0.1140 * b return gray # Update img_to_patches to handle direct image input def img_to_patches(img: PIL.Image.Image) -> tuple: patch_size = 16 img = img.convert('RGB') # Ensure image is in RGB format grayscale_imgs = [] imgs = [] coordinates = [] for i in range(0, img.height, patch_size): for j in range(0, img.width, patch_size): box = (j, i, j + patch_size, i + patch_size) img_color = np.asarray(img.crop(box)) grayscale_image = cv2.cvtColor(src=img_color, code=cv2.COLOR_RGB2GRAY) grayscale_imgs.append(grayscale_image.astype(dtype=np.int32)) imgs.append(img_color) normalized_coord = (i + patch_size // 2, j + patch_size // 2) coordinates.append(normalized_coord) return grayscale_imgs, imgs, coordinates, (img.height, img.width) def get_l1(v): return np.sum(np.abs(v[:, :-1] - v[:, 1:])) def get_l2(v): return np.sum(np.abs(v[:-1, :] - v[1:, :])) def get_l3l4(v): l3 = np.sum(np.abs(v[:-1, :-1] - v[1:, 1:])) l4 = np.sum(np.abs(v[1:, :-1] - v[:-1, 1:])) return l3 + l4 def get_pixel_var_degree_for_patch(patch: np.array) -> int: l1 = get_l1(patch) l2 = get_l2(patch) l3l4 = get_l3l4(patch) return l1 + l2 + l3l4 def get_rich_poor_patches(img: PIL.Image.Image, coloured=True): gray_scale_patches, color_patches, coordinates, img_size = img_to_patches(img) var_with_patch = [] for i, patch in enumerate(gray_scale_patches): if coloured: var_with_patch.append((get_pixel_var_degree_for_patch(patch), color_patches[i], coordinates[i])) else: var_with_patch.append((get_pixel_var_degree_for_patch(patch), patch, coordinates[i])) var_with_patch.sort(reverse=True, key=lambda x: x[0]) mid_point = len(var_with_patch) // 2 r_patch = [(patch, coor) for var, patch, coor in var_with_patch[:mid_point]] p_patch = [(patch, coor) for var, patch, coor in var_with_patch[mid_point:]] p_patch.reverse() return r_patch, p_patch, img_size def azimuthalAverage(image, center=None): y, x = np.indices(image.shape) if not center: center = np.array([(x.max() - x.min()) / 2.0, (y.max() - y.min()) / 2.0]) r = np.hypot(x - center[0], y - center[1]) ind = np.argsort(r.flat) r_sorted = r.flat[ind] i_sorted = image.flat[ind] r_int = r_sorted.astype(int) deltar = r_int[1:] - r_int[:-1] rind = np.where(deltar)[0] nr = rind[1:] - rind[:-1] csim = np.cumsum(i_sorted, dtype=float) tbin = csim[rind[1:]] - csim[rind[:-1]] radial_prof = tbin / nr return radial_prof def azimuthal_integral(img, epsilon=1e-8, N=50): if len(img.shape) == 3 and img.shape[2] == 3: img = RGB2gray(img) f = np.fft.fft2(img) fshift = np.fft.fftshift(f) fshift += epsilon magnitude_spectrum = 20 * np.log(np.abs(fshift)) psd1D = azimuthalAverage(magnitude_spectrum) points = np.linspace(0, N, num=psd1D.size) xi = np.linspace(0, N, num=N) interpolated = griddata(points, psd1D, xi, method='cubic') interpolated = (interpolated - np.min(interpolated)) / (np.max(interpolated) - np.min(interpolated)) return interpolated.astype(np.float32) def positional_emb(coor, im_size, N): img_height, img_width = im_size center_y, center_x = coor normalized_y = center_y / img_height normalized_x = center_x / img_width pos_emb = np.zeros(N) indices = np.arange(N) div_term = 10000 ** (2 * (indices // 2) / N) pos_emb[0::2] = np.sin(normalized_y / div_term[0::2]) + np.sin(normalized_x / div_term[0::2]) pos_emb[1::2] = np.cos(normalized_y / div_term[1::2]) + np.cos(normalized_x / div_term[1::2]) return pos_emb def azi_diff(img: PIL.Image.Image, patch_num, N): r, p, im_size = get_rich_poor_patches(img) r_len = len(r) p_len = len(p) patch_emb_r = np.zeros((patch_num, N)) patch_emb_p = np.zeros((patch_num, N)) positional_emb_r = np.zeros((patch_num, N)) positional_emb_p = np.zeros((patch_num, N)) coor_r = [] coor_p = [] if r_len != 0: for idx in range(patch_num): tmp_patch1 = r[idx % r_len][0] tmp_coor1 = r[idx % r_len][1] patch_emb_r[idx] = azimuthal_integral(tmp_patch1, N=N) positional_emb_r[idx] = positional_emb(tmp_coor1, im_size, N) coor_r.append(tmp_coor1) if p_len != 0: for idx in range(patch_num): tmp_patch2 = p[idx % p_len][0] tmp_coor2 = p[idx % p_len][1] patch_emb_p[idx] = azimuthal_integral(tmp_patch2, N=N) positional_emb_p[idx] = positional_emb(tmp_coor2, im_size, N) coor_p.append(tmp_coor2) output = {"total_emb": [patch_emb_r + positional_emb_r / 5, patch_emb_p + positional_emb_p / 5], "positional_emb": [positional_emb_r / 5, positional_emb_p / 5], "coor": [coor_r, coor_p], "image_size": im_size} return output class AttentionBlock(nn.Module): def __init__(self, input_dim, num_heads, ff_dim, rate=0.1): super(AttentionBlock, self).__init__() self.attention = nn.MultiheadAttention(embed_dim=input_dim, num_heads=num_heads) self.dropout1 = nn.Dropout(rate) self.layer_norm1 = nn.LayerNorm(input_dim) self.ffn = nn.Sequential( nn.Linear(input_dim, ff_dim), nn.ReLU(), nn.Dropout(rate), nn.Linear(ff_dim, input_dim), nn.Dropout(rate) ) self.layer_norm2 = nn.LayerNorm(input_dim) def forward(self, x): attn_output, _ = self.attention(x, x, x) attn_output = self.dropout1(attn_output) out1 = self.layer_norm1(attn_output + x) ffn_output = self.ffn(out1) out2 = self.layer_norm2(ffn_output + out1) return out2 class TextureContrastClassifier(nn.Module): def __init__(self, input_shape, num_heads=4, key_dim=64, ff_dim=256, rate=0.1): super(TextureContrastClassifier, self).__init__() input_dim = input_shape[1] self.rich_attention_block = AttentionBlock(input_dim, num_heads, ff_dim, rate) self.rich_dense = nn.Sequential( nn.Linear(input_dim, 128), nn.ReLU(), nn.Dropout(0.5) ) self.poor_attention_block = AttentionBlock(input_dim, num_heads, ff_dim, rate) self.poor_dense = nn.Sequential( nn.Linear(input_dim, 128), nn.ReLU(), nn.Dropout(0.5) ) self.fc = nn.Sequential( nn.Linear(128 * input_shape[0], 256), nn.ReLU(), nn.Dropout(0.5), nn.Linear(256, 128), nn.ReLU(), nn.Dropout(0.5), nn.Linear(128, 64), nn.ReLU(), nn.Dropout(0.5), nn.Linear(64, 32), nn.ReLU(), nn.Dropout(0.5), nn.Linear(32, 16), nn.ReLU(), nn.Dropout(0.5), nn.Linear(16, 1), nn.Sigmoid() ) def forward(self, rich_texture, poor_texture): rich_texture = rich_texture.permute(1, 0, 2) poor_texture = poor_texture.permute(1, 0, 2) rich_attention = self.rich_attention_block(rich_texture) rich_attention = rich_attention.permute(1, 0, 2) rich_features = self.rich_dense(rich_attention) poor_attention = self.poor_attention_block(poor_texture) poor_attention = poor_attention.permute(1, 0, 2) poor_features = self.poor_dense(poor_attention) difference = rich_features - poor_features difference = difference.view(difference.size(0), -1) output = self.fc(difference) return output input_shape = (128, 256) model = TextureContrastClassifier(input_shape) model.load_state_dict(torch.load('C:/Users/Matt/Downloads/model_epoch_45.pth', map_location=torch.device('cpu'))) def inference(image, model): predictions = [] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) model.eval() tmp = azi_diff(image, patch_num=128, N=256) rich = tmp["total_emb"][0] poor = tmp["total_emb"][1] rich_texture_tensor = torch.tensor(rich, dtype=torch.float32).unsqueeze(0).to(device) poor_texture_tensor = torch.tensor(poor, dtype=torch.float32).unsqueeze(0).to(device) with torch.no_grad(): output = model(rich_texture_tensor, poor_texture_tensor) prediction = output.cpu().numpy().flatten()[0] return prediction # Gradio Interface def predict(image): prediction = inference(image, model) return f"{prediction * 100:.2f}% chance AI-generated" gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs="text").launch()