Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
def load_data(): | |
return pd.read_csv("benchmark_data.csv") | |
def case_insensitive_search(data, query, column): | |
if query: | |
return data[data[column].str.lower().str.contains(query.lower())] | |
return data | |
def display_table(data): | |
# 设置多级列索引 | |
data.columns = pd.MultiIndex.from_tuples([ | |
("Settings", "Framework"), | |
("Settings", "Chat Model"), | |
("Settings", "Embedding Model"), | |
("Settings", "Chunk"), | |
("Retrieval Metrics", "MRR@10"), | |
("Retrieval Metrics", "Hit@10"), | |
("Response Metrics", "Accuracy") | |
]) | |
st.dataframe(data, height=600) | |
def main(): | |
st.title("Multihop-RAG Benchmark 💡") | |
data = load_data() | |
st.sidebar.header("Search Options") | |
chat_model_query = st.sidebar.text_input("Chat Model") | |
embedding_model_query = st.sidebar.text_input("Embedding Model") | |
chunk_query = st.sidebar.text_input("Chunk") | |
frame_query = st.sidebar.text_input("Framework") | |
if chat_model_query: | |
data = case_insensitive_search(data, chat_model_query, 'chat_model') | |
if embedding_model_query: | |
data = case_insensitive_search(data, embedding_model_query, 'embedding_model') | |
if chunk_query: | |
data = case_insensitive_search(data, chunk_query, 'chunk') | |
if frame_query: | |
data = case_insensitive_search(data, frame_query, 'framework') | |
# 根据需要选择列 | |
data = data[['framework', 'chat_model', 'embedding_model', 'chunk', 'MRR@10', 'Hit@10', 'Accuracy']] | |
display_table(data) | |
if st.sidebar.checkbox("Show Metrics Distribution"): | |
st.subheader("Metrics Distribution") | |
st.bar_chart(data[['MRR@10', 'Hit@10', 'Accuracy']]) | |
st.sidebar.header("Citation") | |
st.sidebar.info( | |
"Please cite this dataset as:\n" | |
"Tang, Yixuan, and Yi Yang. MultiHop-RAG: Benchmarking Retrieval-Augmented Generation for Multi-Hop Queries. ArXiv, 2024, /abs/2401.15391." | |
) | |
st.markdown("---") | |
st.caption("For citation, please use: 'Tang, Yixuan, and Yi Yang. MultiHop-RAG: Benchmarking Retrieval-Augmented Generation for Multi-Hop Queries. ArXiv, 2024, /abs/2401.15391. '") | |
st.markdown("---") | |
st.caption("For results self-reporting, please send an email to ytangch@connect.ust.hk") | |
if __name__ == "__main__": | |
main() |