OmniConsistency / app.py
linoyts's picture
linoyts HF Staff
Update app.py
2fa2744 verified
raw
history blame
9.33 kB
import spaces
import os
import time
import torch
import gradio as gr
from PIL import Image
from huggingface_hub import hf_hub_download, list_repo_files
from src_inference.pipeline import FluxPipeline
from src_inference.lora_helper import set_single_lora
BASE_PATH = "black-forest-labs/FLUX.1-dev"
LOCAL_LORA_DIR = "./LoRAs"
CUSTOM_LORA_DIR = "./Custom_LoRAs"
os.makedirs(LOCAL_LORA_DIR, exist_ok=True)
os.makedirs(CUSTOM_LORA_DIR, exist_ok=True)
print("downloading OmniConsistency base LoRA …")
omni_consistency_path = hf_hub_download(
repo_id="showlab/OmniConsistency",
filename="OmniConsistency.safetensors",
local_dir="./Model"
)
print("loading base pipeline …")
pipe = FluxPipeline.from_pretrained(
BASE_PATH, torch_dtype=torch.bfloat16
).to("cuda")
set_single_lora(pipe.transformer, omni_consistency_path,
lora_weights=[1], cond_size=512)
def download_all_loras():
lora_names = [
"3D_Chibi", "American_Cartoon", "Chinese_Ink", "Clay_Toy",
"Fabric", "Ghibli", "Irasutoya", "Jojo", "LEGO", "Line",
"Macaron", "Oil_Painting", "Origami", "Paper_Cutting",
"Picasso", "Pixel", "Poly", "Pop_Art", "Rick_Morty",
"Snoopy", "Van_Gogh", "Vector"
]
for name in lora_names:
hf_hub_download(
repo_id="showlab/OmniConsistency",
filename=f"LoRAs/{name}_rank128_bf16.safetensors",
local_dir=LOCAL_LORA_DIR,
)
download_all_loras()
def clear_cache(transformer):
for _, attn_processor in transformer.attn_processors.items():
attn_processor.bank_kv.clear()
@spaces.GPU()
def generate_image(
lora_name,
custom_repo_id,
prompt,
uploaded_image,
width, height,
guidance_scale,
num_inference_steps,
seed
):
width, height = int(width), int(height)
generator = torch.Generator("cpu").manual_seed(seed)
if custom_repo_id and custom_repo_id.strip():
repo_id = custom_repo_id.strip()
try:
files = list_repo_files(repo_id)
print("using custom LoRA from:", repo_id)
safetensors_files = [f for f in files if f.endswith(".safetensors")]
print("found safetensors files:", safetensors_files)
if not safetensors_files:
raise ValueError("No .safetensors files were found in this repo")
fname = safetensors_files[0]
lora_path = hf_hub_download(
repo_id=repo_id,
filename=fname,
local_dir=CUSTOM_LORA_DIR,
)
except Exception as e:
raise gr.Error(f"Load custom LoRA failed: {e}")
else:
lora_path = os.path.join(
f"{LOCAL_LORA_DIR}/LoRAs", f"{lora_name}_rank128_bf16.safetensors"
)
pipe.unload_lora_weights()
try:
pipe.load_lora_weights(
os.path.dirname(lora_path),
weight_name=os.path.basename(lora_path)
)
except Exception as e:
raise gr.Error(f"Load LoRA failed: {e}")
spatial_image = [uploaded_image.convert("RGB")]
subject_images = []
start = time.time()
out_img = pipe(
prompt,
height=(height // 8) * 8,
width=(width // 8) * 8,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
max_sequence_length=512,
generator=generator,
spatial_images=spatial_image,
subject_images=subject_images,
cond_size=512,
).images[0]
print(f"inference time: {time.time()-start:.2f}s")
clear_cache(pipe.transformer)
return uploaded_image, out_img
# =============== Gradio UI ===============
def create_interface():
demo_lora_names = [
"3D_Chibi", "American_Cartoon", "Chinese_Ink", "Clay_Toy",
"Fabric", "Ghibli", "Irasutoya", "Jojo", "LEGO", "Line",
"Macaron", "Oil_Painting", "Origami", "Paper_Cutting",
"Picasso", "Pixel", "Poly", "Pop_Art", "Rick_Morty",
"Snoopy", "Van_Gogh", "Vector"
]
def update_trigger_word(lora_name, prompt):
for name in demo_lora_names:
trigger = " ".join(name.split("_")) + " style,"
prompt = prompt.replace(trigger, "")
new_trigger = " ".join(lora_name.split("_"))+ " style,"
return new_trigger + prompt
# Example data
examples = [
["3D_Chibi", "", "3D Chibi style, Two smiling colleagues enthusiastically high-five in front of a whiteboard filled with technical notes about multimodal learning, reflecting a moment of success and collaboration at OpenAI.",
Image.open("./test_imgs/00.png"), 680, 1024, 3.5, 24, 42],
["Clay_Toy", "", "Clay Toy style, Three team members from OpenAI are gathered around a laptop in a cozy, festive setting, with holiday decorations in the background; one waves cheerfully while the others engage in light conversation, reflecting a relaxed and collaborative atmosphere.",
Image.open("./test_imgs/01.png"), 560, 1024, 3.5, 24, 42],
["American_Cartoon", "", "American Cartoon style, In a dramatic and comedic moment from a classic Chinese film, an intense elder with a white beard and red hat grips a younger man, declaring something with fervor, while the subtitle at the bottom reads 'I want them all' — capturing both tension and humor.",
Image.open("./test_imgs/02.png"), 568, 1024, 3.5, 24, 42],
["Origami", "", "Origami style, A thrilled fan wearing a Portugal football kit poses energetically with a smiling Cristiano Ronaldo, who gives a thumbs-up, as they stand side by side in a casual, cheerful moment—capturing the excitement of meeting a football legend.",
Image.open("./test_imgs/03.png"), 768, 672, 3.5, 24, 42],
["Vector", "", "Vector style, A man glances admiringly at a passing woman, while his girlfriend looks at him in disbelief, perfectly capturing the theme of shifting attention and misplaced priorities in a humorous, relatable way.",
Image.open("./test_imgs/04.png"), 512, 1024, 3.5, 24, 42]
]
header = """
<div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
<a href="https://arxiv.org/abs/2505.18445"><img src="https://img.shields.io/badge/ariXv-2505.18445-A42C25.svg" alt="arXiv"></a>
<a href="https://huggingface.co/showlab/OmniConsistency"><img src="https://img.shields.io/badge/🤗_HuggingFace-Model-ffbd45.svg" alt="HuggingFace"></a>
<a href="https://github.com/showlab/OmniConsistency"><img src="https://img.shields.io/badge/GitHub-Code-blue.svg?logo=github&" alt="GitHub"></a>
</div>
"""
with gr.Blocks() as demo:
gr.Markdown("# OmniConsistency LoRA Image Generation")
gr.Markdown("Select a LoRA, enter a prompt, and upload an image to generate a new image with OmniConsistency.")
gr.HTML(header)
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="pil", label="Upload Image")
prompt_box = gr.Textbox(label="Prompt",
value="3D Chibi style,",
info="Remember to include the necessary trigger words if you're using a custom LoRA."
)
lora_dropdown = gr.Dropdown(
demo_lora_names, label="Select built-in LoRA")
custom_repo_box = gr.Textbox(
label="Enter Custom LoRA",
placeholder="LoRA Hugging Face path (e.g., 'username/repo_name')",
info="If you want to use a custom LoRA, enter its Hugging Face repo ID here and built-in LoRA will be Overridden. Leave empty to use built-in LoRAs. [Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)"
)
gen_btn = gr.Button("Generate")
with gr.Column(scale=1):
output_image = gr.ImageSlider(label="Generated Image")
with gr.Accordion("Advanced Options", open=False):
height_box = gr.Textbox(value="1024", label="Height")
width_box = gr.Textbox(value="1024", label="Width")
guidance_slider = gr.Slider(
0.1, 20, value=3.5, step=0.1, label="Guidance Scale")
steps_slider = gr.Slider(
1, 50, value=25, step=1, label="Inference Steps")
seed_slider = gr.Slider(
1, 2_147_483_647, value=42, step=1, label="Seed")
lora_dropdown.select(fn=update_trigger_word, inputs=[lora_dropdown,prompt_box],
outputs=prompt_box)
gr.Examples(
examples=examples,
inputs=[lora_dropdown, custom_repo_box, prompt_box, image_input,
height_box, width_box, guidance_slider, steps_slider, seed_slider],
outputs=output_image,
fn=generate_image,
cache_examples=False,
label="Examples"
)
gen_btn.click(
fn=generate_image,
inputs=[lora_dropdown, custom_repo_box, prompt_box, image_input,
width_box, height_box, guidance_slider, steps_slider, seed_slider],
outputs=output_image
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch()