File size: 6,322 Bytes
993b547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from fastapi import FastAPI, Request
from pydantic import BaseModel

import torch

from fastapi.middleware.cors import CORSMiddleware

from ROBERTAmodel import *
from BERTmodel import *
from DISTILLBERTmodel import *

VISUALIZER_CLASSES = {
    "BERT": BERTVisualizer,
    "RoBERTa": RoBERTaVisualizer,
    "DistilBERT": DistilBERTVisualizer,
}

VISUALIZER_CACHE = {}
app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # or restrict to ["http://localhost:3000"]
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

MODEL_MAP = {
    "BERT": "bert-base-uncased",
    "RoBERTa": "roberta-base",
    "DistilBERT": "distilbert-base-uncased",
}

class LoadModelRequest(BaseModel):
    model: str
    sentence: str
    task:str
    hypothesis:str

class GradAttnModelRequest(BaseModel):
    model: str
    task: str
    sentence: str
    hypothesis:str
    maskID: int | None = None

class PredModelRequest(BaseModel):
    model: str
    sentence: str
    task:str
    hypothesis:str
    maskID: int | None = None


@app.post("/load_model")
def load_model(req: LoadModelRequest):
    print(f"\n--- /load_model request received ---")
    print(f"Model: {req.model}")
    print(f"Sentence: {req.sentence}")
    print(f"Task: {req.task}")
    print(f"hypothesis: {req.hypothesis}")


    if req.model in VISUALIZER_CACHE:
        del VISUALIZER_CACHE[req.model]
    torch.cuda.empty_cache()

    vis_class = VISUALIZER_CLASSES.get(req.model)
    if vis_class is None:
        return {"error": f"Unknown model: {req.model}"}

    print("instantiating visualizer")
    try:
        vis = vis_class(task=req.task.lower())
        print(vis)
        VISUALIZER_CACHE[req.model] = vis
        print("Visualizer instantiated")
    except Exception as e:
        print("Visualizer init failed:", e)
        return {"error": f"Instantiation failed: {str(e)}"}

    print('tokenizing')
    try:
        if req.task.lower() == 'mnli':
            token_output = vis.tokenize(req.sentence, hypothesis=req.hypothesis)
        else:
            token_output = vis.tokenize(req.sentence)
        print("0 Tokenization successful:", token_output["tokens"])
    except Exception as e:
        print("Tokenization failed:", e)
        return {"error": f"Tokenization failed: {str(e)}"}

    print('response ready')    
    response = {
        "model": req.model,
        "tokens": token_output['tokens'],
        "num_layers": vis.num_attention_layers,
    }
    print("load model successful")
    print(response)
    return response





@app.post("/predict_model")
def predict_model(req: PredModelRequest):
    
    print(f"\n--- /predict_model request received ---")
    print(f"predict: Model: {req.model}")
    print(f"predict: Task: {req.task}")
    print(f"predict: sentence: {req.sentence}")
    print(f"predict: hypothesis: {req.hypothesis}")
    print(f"predict: maskID: {req.maskID}")



    print('predict: instantiating')
    try:
        vis_class = VISUALIZER_CLASSES.get(req.model)
        if vis_class is None:
            return {"error": f"Unknown model: {req.model}"}
        #if any(p.device.type == 'meta' for p in vis.model.parameters()):
        #    vis.model = torch.nn.Module.to_empty(vis.model, device=torch.device("cpu"))
    
        vis = vis_class(task=req.task.lower())
        VISUALIZER_CACHE[req.model] = vis
        print("Model reloaded and cached.")
    except Exception as e:
        return {"error": f"Failed to reload model: {str(e)}"}
    
    print('predict: meta stuff')
    

    
    print('predict: Run prediction')
    try:
        if req.task.lower() == 'mnli':
            decoded, top_probs = vis.predict(req.task.lower(), req.sentence, hypothesis=req.hypothesis)
        elif req.task.lower() == 'mlm':
            decoded, top_probs = vis.predict(req.task.lower(), req.sentence, maskID=req.maskID)
        
        else:
            decoded, top_probs = vis.predict(req.task.lower(), req.sentence)
    except Exception as e:
        decoded, top_probs = "error", e
        print(e)

    print('predict: response ready')
    response = {
        "decoded": decoded,
        "top_probs": top_probs.tolist(),
    }
    print("predict: predict model successful")
    if len(decoded) > 5:
        print([(k,v[:5]) for k,v in response.items()])
    else:
        print(response)
    return response



@app.post("/get_grad_attn_matrix")
def get_grad_attn_matrix(req: GradAttnModelRequest):
    
    try:
        print(f"\n--- /get_grad_matrix request received ---")
        print(f"grad:Model: {req.model}")
        print(f"grad:Task: {req.task}")
        print(f"grad:sentence: {req.sentence}")
        print(f"grad: hypothesis: {req.hypothesis}")
        print(f"predict: maskID: {req.maskID}")
        
        
        
        try:
            vis_class = VISUALIZER_CLASSES.get(req.model)
            if vis_class is None:
                return {"error": f"Unknown model: {req.model}"}
            #if any(p.device.type == 'meta' for p in vis.model.parameters()):
            #    vis.model = torch.nn.Module.to_empty(vis.model, device=torch.device("cpu"))
            vis = vis_class(task=req.task.lower())
            VISUALIZER_CACHE[req.model] = vis
            print("Model reloaded and cached.")
        except Exception as e:
            return {"error": f"Failed to reload model: {str(e)}"} 


        
        print("run function")
        try:
            if req.task.lower()=='mnli':
                grad_matrix, attn_matrix = vis.get_all_grad_attn_matrix(req.task.lower(), req.sentence,hypothesis=req.hypothesis)
            elif req.task.lower()=='mlm':
                grad_matrix, attn_matrix = vis.get_all_grad_attn_matrix(req.task.lower(), req.sentence,maskID=req.maskID)
            else:
                grad_matrix, attn_matrix = vis.get_all_grad_attn_matrix(req.task.lower(), req.sentence)
        except Exception as e:
            print("Exception during grad/attn computation:", e)
            grad_matrix, attn_matrix = e,e

    
        response = {
            "grad_matrix": grad_matrix,
            "attn_matrix": attn_matrix,
        }
        print('grad attn successful')
        return response
    except Exception as e:
        print("SERVER EXCEPTION:", e)
        return {"error": str(e)}