Spaces:
Sleeping
Sleeping
File size: 6,322 Bytes
993b547 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
from fastapi import FastAPI, Request
from pydantic import BaseModel
import torch
from fastapi.middleware.cors import CORSMiddleware
from ROBERTAmodel import *
from BERTmodel import *
from DISTILLBERTmodel import *
VISUALIZER_CLASSES = {
"BERT": BERTVisualizer,
"RoBERTa": RoBERTaVisualizer,
"DistilBERT": DistilBERTVisualizer,
}
VISUALIZER_CACHE = {}
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # or restrict to ["http://localhost:3000"]
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
MODEL_MAP = {
"BERT": "bert-base-uncased",
"RoBERTa": "roberta-base",
"DistilBERT": "distilbert-base-uncased",
}
class LoadModelRequest(BaseModel):
model: str
sentence: str
task:str
hypothesis:str
class GradAttnModelRequest(BaseModel):
model: str
task: str
sentence: str
hypothesis:str
maskID: int | None = None
class PredModelRequest(BaseModel):
model: str
sentence: str
task:str
hypothesis:str
maskID: int | None = None
@app.post("/load_model")
def load_model(req: LoadModelRequest):
print(f"\n--- /load_model request received ---")
print(f"Model: {req.model}")
print(f"Sentence: {req.sentence}")
print(f"Task: {req.task}")
print(f"hypothesis: {req.hypothesis}")
if req.model in VISUALIZER_CACHE:
del VISUALIZER_CACHE[req.model]
torch.cuda.empty_cache()
vis_class = VISUALIZER_CLASSES.get(req.model)
if vis_class is None:
return {"error": f"Unknown model: {req.model}"}
print("instantiating visualizer")
try:
vis = vis_class(task=req.task.lower())
print(vis)
VISUALIZER_CACHE[req.model] = vis
print("Visualizer instantiated")
except Exception as e:
print("Visualizer init failed:", e)
return {"error": f"Instantiation failed: {str(e)}"}
print('tokenizing')
try:
if req.task.lower() == 'mnli':
token_output = vis.tokenize(req.sentence, hypothesis=req.hypothesis)
else:
token_output = vis.tokenize(req.sentence)
print("0 Tokenization successful:", token_output["tokens"])
except Exception as e:
print("Tokenization failed:", e)
return {"error": f"Tokenization failed: {str(e)}"}
print('response ready')
response = {
"model": req.model,
"tokens": token_output['tokens'],
"num_layers": vis.num_attention_layers,
}
print("load model successful")
print(response)
return response
@app.post("/predict_model")
def predict_model(req: PredModelRequest):
print(f"\n--- /predict_model request received ---")
print(f"predict: Model: {req.model}")
print(f"predict: Task: {req.task}")
print(f"predict: sentence: {req.sentence}")
print(f"predict: hypothesis: {req.hypothesis}")
print(f"predict: maskID: {req.maskID}")
print('predict: instantiating')
try:
vis_class = VISUALIZER_CLASSES.get(req.model)
if vis_class is None:
return {"error": f"Unknown model: {req.model}"}
#if any(p.device.type == 'meta' for p in vis.model.parameters()):
# vis.model = torch.nn.Module.to_empty(vis.model, device=torch.device("cpu"))
vis = vis_class(task=req.task.lower())
VISUALIZER_CACHE[req.model] = vis
print("Model reloaded and cached.")
except Exception as e:
return {"error": f"Failed to reload model: {str(e)}"}
print('predict: meta stuff')
print('predict: Run prediction')
try:
if req.task.lower() == 'mnli':
decoded, top_probs = vis.predict(req.task.lower(), req.sentence, hypothesis=req.hypothesis)
elif req.task.lower() == 'mlm':
decoded, top_probs = vis.predict(req.task.lower(), req.sentence, maskID=req.maskID)
else:
decoded, top_probs = vis.predict(req.task.lower(), req.sentence)
except Exception as e:
decoded, top_probs = "error", e
print(e)
print('predict: response ready')
response = {
"decoded": decoded,
"top_probs": top_probs.tolist(),
}
print("predict: predict model successful")
if len(decoded) > 5:
print([(k,v[:5]) for k,v in response.items()])
else:
print(response)
return response
@app.post("/get_grad_attn_matrix")
def get_grad_attn_matrix(req: GradAttnModelRequest):
try:
print(f"\n--- /get_grad_matrix request received ---")
print(f"grad:Model: {req.model}")
print(f"grad:Task: {req.task}")
print(f"grad:sentence: {req.sentence}")
print(f"grad: hypothesis: {req.hypothesis}")
print(f"predict: maskID: {req.maskID}")
try:
vis_class = VISUALIZER_CLASSES.get(req.model)
if vis_class is None:
return {"error": f"Unknown model: {req.model}"}
#if any(p.device.type == 'meta' for p in vis.model.parameters()):
# vis.model = torch.nn.Module.to_empty(vis.model, device=torch.device("cpu"))
vis = vis_class(task=req.task.lower())
VISUALIZER_CACHE[req.model] = vis
print("Model reloaded and cached.")
except Exception as e:
return {"error": f"Failed to reload model: {str(e)}"}
print("run function")
try:
if req.task.lower()=='mnli':
grad_matrix, attn_matrix = vis.get_all_grad_attn_matrix(req.task.lower(), req.sentence,hypothesis=req.hypothesis)
elif req.task.lower()=='mlm':
grad_matrix, attn_matrix = vis.get_all_grad_attn_matrix(req.task.lower(), req.sentence,maskID=req.maskID)
else:
grad_matrix, attn_matrix = vis.get_all_grad_attn_matrix(req.task.lower(), req.sentence)
except Exception as e:
print("Exception during grad/attn computation:", e)
grad_matrix, attn_matrix = e,e
response = {
"grad_matrix": grad_matrix,
"attn_matrix": attn_matrix,
}
print('grad attn successful')
return response
except Exception as e:
print("SERVER EXCEPTION:", e)
return {"error": str(e)}
|