Spaces:
Sleeping
Sleeping
File size: 8,086 Bytes
993b547 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import torch
import matplotlib.pyplot as plt
import torch.nn as nn
from datasets import load_dataset
from torch.utils.data import DataLoader
import torch.nn.functional as F
import os
from transformers import DistilBertModel, DistilBertTokenizer
from models import TransformerVisualizer
from transformers import (
DistilBertTokenizer,
DistilBertForMaskedLM, DistilBertForSequenceClassification
)
class DistilBERTVisualizer(TransformerVisualizer):
def __init__(self, task):
super().__init__()
self.task = task
self.tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
if self.task == 'mlm':
self.model = DistilBertForMaskedLM.from_pretrained('distilbert-base-uncased')
elif self.task == 'sst':
self.model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased-finetuned-sst-2-english')
elif self.task == 'mnli':
self.model = DistilBertForSequenceClassification.from_pretrained("textattack/distilbert-base-uncased-MNLI")
else:
raise NotImplementedError("Task not supported for DistilBERT")
self.model.eval()
self.num_attention_layers = len(self.model.distilbert.transformer.layer)
self.model.to(self.device)
def tokenize(self, text, hypothesis = ''):
if len(hypothesis) == 0:
encoded = self.tokenizer(text, return_tensors='pt', return_attention_mask=True,padding=False, truncation=True)
else:
encoded = self.tokenizer(text, hypothesis, return_tensors='pt', return_attention_mask=True,padding=False, truncation=True)
input_ids = encoded['input_ids'].to(self.device)
attention_mask = encoded['attention_mask'].to(self.device)
tokens = self.tokenizer.convert_ids_to_tokens(input_ids[0])
return {
'input_ids': input_ids,
'attention_mask': attention_mask,
'tokens': tokens
}
def predict(self, task, text, hypothesis='', maskID = 0):
if task == 'mlm':
inputs = self.tokenizer(text, return_tensors='pt', padding=False, truncation=True)
if maskID is not None and 0 <= maskID < inputs['input_ids'].size(1):
inputs['input_ids'][0][maskID] = self.tokenizer.mask_token_id
mask_index = maskID
else:
raise ValueError(f"Invalid maskID {maskID} for input of length {inputs['input_ids'].size(1)}")
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits
mask_logits = logits[0, mask_index]
top_probs, top_indices = torch.topk(F.softmax(mask_logits, dim=-1), 10)
decoded = self.tokenizer.convert_ids_to_tokens(top_indices.tolist())
return decoded, top_probs
elif task == 'sst':
inputs = self.tokenizer(text, return_tensors='pt', padding=False, truncation=True).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits
probs = F.softmax(logits, dim=1).squeeze()
labels = ["negative", "positive"]
return labels, probs
elif task == 'mnli':
inputs = self.tokenizer(text, hypothesis, return_tensors='pt', padding=True, truncation=True).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits
probs = F.softmax(logits, dim=1).squeeze()
labels = ["entailment", "neutral", "contradiction"]
return labels, probs
else:
raise NotImplementedError(f"Task '{task}' not supported for DistilBERT")
def get_all_grad_attn_matrix(self, task, sentence, hypothesis='', maskID = 0):
print(task, sentence,hypothesis)
print('Tokenize')
if task == 'mnli':
inputs = self.tokenizer(sentence, hypothesis, return_tensors='pt', padding=False, truncation=True)
elif task == 'mlm':
inputs = self.tokenizer(sentence, return_tensors='pt', padding=False, truncation=True)
if maskID is not None and 0 <= maskID < inputs['input_ids'].size(1):
inputs['input_ids'][0][maskID] = self.tokenizer.mask_token_id
else:
print(f"Invalid maskID {maskID} for input of length {inputs['input_ids'].size(1)}")
raise ValueError(f"Invalid maskID {maskID} for input of length {inputs['input_ids'].size(1)}")
inputs = {k: v.to(self.device) for k, v in inputs.items()}
else:
inputs = self.tokenizer(sentence, return_tensors='pt', padding=False, truncation=True)
tokens = self.tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
print(tokens)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
print('Input embeddings with grad')
embedding_layer = self.model.distilbert.embeddings.word_embeddings
inputs_embeds = embedding_layer(inputs["input_ids"])
inputs_embeds.requires_grad_()
print('Forward pass')
outputs = self.model.distilbert(
inputs_embeds=inputs_embeds,
attention_mask=inputs["attention_mask"],
output_attentions=True,
)
attentions = outputs.attentions # list of [1, heads, seq, seq]
print('Mean attentions per layer')
mean_attns = [a.squeeze(0).mean(dim=0).detach().cpu() for a in attentions]
attn_matrices_all = []
grad_matrices_all = []
for target_layer in range(len(attentions)):
grad_matrix, attn_matrix = self.get_grad_attn_matrix(inputs_embeds, attentions, mean_attns, target_layer)
grad_matrices_all.append(grad_matrix.tolist())
attn_matrices_all.append(attn_matrix.tolist())
return grad_matrices_all, attn_matrices_all
def get_grad_attn_matrix(self,inputs_embeds, attentions, mean_attns, target_layer):
attn_matrix = mean_attns[target_layer]
seq_len = attn_matrix.shape[0]
attn_layer = attentions[target_layer].squeeze(0).mean(dim=0)
print('Computing grad norms')
grad_norms_list = []
for k in range(seq_len):
scalar = attn_layer[:, k].sum()
grad = torch.autograd.grad(scalar, inputs_embeds, retain_graph=True)[0].squeeze(0)
grad_norms = grad.norm(dim=1)
grad_norms_list.append(grad_norms.unsqueeze(1))
grad_matrix = torch.cat(grad_norms_list, dim=1)
grad_matrix = grad_matrix[:seq_len, :seq_len]
attn_matrix = attn_matrix[:seq_len, :seq_len]
return grad_matrix, attn_matrix
if __name__ == "__main__":
import sys
MODEL_CLASSES = {
"bert": BERTVisualizer,
"roberta": RoBERTaVisualizer,
"distilbert": DistilBERTVisualizer,
"bart": BARTVisualizer,
}
# Parse command-line args or fallback to default
model_name = sys.argv[1] if len(sys.argv) > 1 else "bert"
text = " ".join(sys.argv[2:]) if len(sys.argv) > 2 else "The quick brown fox jumps over the lazy dog."
if model_name.lower() not in MODEL_CLASSES:
print(f"Supported models: {list(MODEL_CLASSES.keys())}")
sys.exit(1)
# Instantiate the visualizer
visualizer_class = MODEL_CLASSES[model_name.lower()]
visualizer = visualizer_class()
# Tokenize
token_info = visualizer.tokenize(text)
# Report
print(f"\nModel: {model_name}")
print(f"Num attention layers: {visualizer.num_attention_layers}")
print(f"Tokens: {token_info['tokens']}")
print(f"Input IDs: {token_info['input_ids'].tolist()}")
print(f"Attention mask: {token_info['attention_mask'].tolist()}")
"""
usage for debug:
python your_file.py bert "The rain in Spain falls mainly on the plain."
""" |