Spaces:
Sleeping
Sleeping
File size: 9,637 Bytes
993b547 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
from transformers import BertTokenizer, BertModel
import torch
import matplotlib.pyplot as plt
import torch.nn as nn
from transformers import BertTokenizer, BertModel, DataCollatorForLanguageModeling
from datasets import load_dataset
from torch.utils.data import DataLoader
import torch.nn.functional as F
from transformers import (
BertTokenizer, BertModel,
DataCollatorForLanguageModeling
)
import torch.optim as optim
import os
from transformers.models.bert.modeling_bert import BertOnlyMLMHead
from models import TransformerVisualizer
from transformers import (
BertTokenizer,
BertForMaskedLM,
BertForSequenceClassification,
BertForQuestionAnswering,
)
import torch
import torch.nn.functional as F
from models import TransformerVisualizer
class BERTVisualizer(TransformerVisualizer):
def __init__(self,task):
super().__init__()
self.task = task
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
print('finding model', self.task)
if self.task == 'mlm':
self.model = BertForMaskedLM.from_pretrained(
"bert-base-uncased",
attn_implementation="eager" # fallback to standard attention
).to(self.device)
elif self.task == 'sst':
self.model = BertForSequenceClassification.from_pretrained("textattack/bert-base-uncased-SST-2",device_map=None)
elif self.task == 'mnli':
self.model = BertForSequenceClassification.from_pretrained("textattack/bert-base-uncased-MNLI", device_map=None)
else:
raise ValueError(f"Unsupported task: {self.task}")
print('model found')
#self.model.to(self.device)
print('self device junk')
self.model.eval()
print('self model eval')
self.num_attention_layers = len(self.model.bert.encoder.layer)
print('init finished')
def tokenize(self, text, hypothesis = ''):
print('TTTokenize',text,'H:', hypothesis)
if len(hypothesis) == 0:
encoded = self.tokenizer(text, return_tensors='pt', return_attention_mask=True)
else:
encoded = self.tokenizer(text, hypothesis, return_tensors='pt', return_attention_mask=True)
input_ids = encoded['input_ids'].to(self.device)
attention_mask = encoded['attention_mask'].to(self.device)
tokens = self.tokenizer.convert_ids_to_tokens(input_ids[0])
return {
'input_ids': input_ids,
'attention_mask': attention_mask,
'tokens': tokens
}
def predict(self, task, text, hypothesis='', maskID = None):
print(task,text,hypothesis)
if task == 'mlm':
# Tokenize and find [MASK] position
print('Tokenize and find [MASK] position')
inputs = self.tokenizer(text, return_tensors='pt', padding=False, truncation=True)
if maskID is not None and 0 <= maskID < inputs['input_ids'].size(1):
inputs['input_ids'][0][maskID] = self.tokenizer.mask_token_id
mask_index = maskID
else:
raise ValueError(f"Invalid maskID {maskID} for input length {inputs['input_ids'].size(1)}")
# Move to device
inputs = {k: v.to(self.device) for k, v in inputs.items()}
# Get embeddings
embedding_layer = self.model.bert.embeddings.word_embeddings
inputs_embeds = embedding_layer(inputs['input_ids'])
# Forward through BERT encoder
hidden_states = self.model.bert(inputs_embeds=inputs_embeds,
attention_mask=inputs['attention_mask']).last_hidden_state
# Predict logits via MLM head
logits = self.model.cls(hidden_states)
mask_logits = logits[0, mask_index]
top_probs, top_indices = torch.topk(mask_logits, k=10, dim=-1)
top_probs = F.softmax(top_probs, dim=-1)
decoded = self.tokenizer.convert_ids_to_tokens(top_indices.tolist())
return decoded, top_probs
elif task == 'sst':
print('input')
inputs = self.tokenizer(text, return_tensors='pt', padding=False, truncation=True).to(self.device)
print('output')
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits # shape: [1, 2]
probs = F.softmax(logits, dim=1).squeeze()
labels = ["negative", "positive"]
print('ready to return')
return labels, probs
elif task == 'mnli':
inputs = self.tokenizer(text, hypothesis, return_tensors='pt', padding=True, truncation=True).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits
probs = F.softmax(logits, dim=1).squeeze()
labels = ["entailment", "neutral", "contradiction"]
return labels, probs
def get_all_grad_attn_matrix(self, task, sentence, hypothesis='', maskID = 0):
print('GET GRAD:', task,'sentence',sentence, 'hypothesis', hypothesis)
print('Tokenize')
if task == 'mnli':
inputs = self.tokenizer(sentence, hypothesis, return_tensors='pt', padding=False, truncation=True)
elif task == 'mlm':
inputs = self.tokenizer(sentence, return_tensors='pt', padding=False, truncation=True)
if maskID is not None and 0 <= maskID < inputs['input_ids'].size(1):
inputs['input_ids'][0][maskID] = self.tokenizer.mask_token_id
else:
raise ValueError(f"Invalid maskID {maskID} for input length {inputs['input_ids'].size(1)}")
else:
inputs = self.tokenizer(sentence, return_tensors='pt', padding=False, truncation=True)
tokens = self.tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
inputs = {k: v.to(self.device) for k, v in inputs.items()}
print(inputs['input_ids'].shape)
print(tokens,len(tokens))
print('Input embeddings with grad')
embedding_layer = self.model.bert.embeddings.word_embeddings
inputs_embeds = embedding_layer(inputs["input_ids"])
inputs_embeds.requires_grad_()
print('Forward pass')
outputs = self.model.bert(
inputs_embeds=inputs_embeds,
attention_mask=inputs["attention_mask"],
output_attentions=True
)
attentions = outputs.attentions # list of [1, heads, seq, seq]
print('Optional: store average attentions per layer')
mean_attns = [a.squeeze(0).mean(dim=0).detach().cpu() for a in attentions]
attn_matrices_all = []
grad_matrices_all = []
for target_layer in range(len(attentions)):
grad_matrix, attn_matrix = self.get_grad_attn_matrix(inputs_embeds, attentions, mean_attns, target_layer)
grad_matrices_all.append(grad_matrix.tolist())
attn_matrices_all.append(attn_matrix.tolist())
return grad_matrices_all, attn_matrices_all
def get_grad_attn_matrix(self,inputs_embeds, attentions, mean_attns, target_layer):
attn_matrix = mean_attns[target_layer]
seq_len = attn_matrix.shape[0]
attn_layer = attentions[target_layer].squeeze(0).mean(dim=0) # [seq, seq]
print('computing gradnorms now')
grad_norms_list = []
for k in range(seq_len):
scalar = attn_layer[:, k].sum() # ✅ total attention received by token k
# Compute gradient: d scalar / d inputs_embeds
grad = torch.autograd.grad(scalar, inputs_embeds, retain_graph=True)[0].squeeze(0) # shape: [seq, hidden]
grad_norms = grad.norm(dim=1) # shape: [seq]
grad_norms_list.append(grad_norms.unsqueeze(1)) # shape: [seq, 1]
grad_matrix = torch.cat(grad_norms_list, dim=1) # shape: [seq, seq]
print('ready to send!')
grad_matrix = grad_matrix[:seq_len, :seq_len]
attn_matrix = attn_matrix[:seq_len, :seq_len]
#tokens = self.tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
return grad_matrix, attn_matrix
if __name__ == "__main__":
import sys
MODEL_CLASSES = {
"bert": BERTVisualizer,
"roberta": RoBERTaVisualizer,
"distilbert": DistilBERTVisualizer,
"bart": BARTVisualizer,
}
# Parse command-line args or fallback to default
model_name = sys.argv[1] if len(sys.argv) > 1 else "bert"
text = " ".join(sys.argv[2:]) if len(sys.argv) > 2 else "The quick brown fox jumps over the lazy dog."
if model_name.lower() not in MODEL_CLASSES:
print(f"Supported models: {list(MODEL_CLASSES.keys())}")
sys.exit(1)
# Instantiate the visualizer
visualizer_class = MODEL_CLASSES[model_name.lower()]
visualizer = visualizer_class()
# Tokenize
token_info = visualizer.tokenize(text)
# Report
print(f"\nModel: {model_name}")
print(f"Num attention layers: {visualizer.num_attention_layers}")
print(f"Tokens: {token_info['tokens']}")
print(f"Input IDs: {token_info['input_ids'].tolist()}")
print(f"Attention mask: {token_info['attention_mask'].tolist()}")
"""
usage for debug:
python your_file.py bert "The rain in Spain falls mainly on the plain."
""" |