File size: 9,727 Bytes
93adbb1
 
 
 
 
 
 
9b48d92
 
93adbb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b48d92
93adbb1
 
 
 
 
 
9b48d92
 
 
 
 
93adbb1
9b48d92
93adbb1
 
 
 
 
 
9b48d92
 
 
 
 
93adbb1
9b48d92
 
 
d37fcc1
9b48d92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67aa9c5
93adbb1
 
 
 
 
 
 
9b48d92
 
93adbb1
9b48d92
93adbb1
 
 
9b48d92
d594b53
9b48d92
 
93adbb1
 
 
 
 
 
9b48d92
 
 
 
93adbb1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
from transformers import RobertaTokenizer, RobertaForMaskedLM
import torch
import torch.nn.functional as F
from models import TransformerVisualizer
from transformers import (
    RobertaForMaskedLM, RobertaForSequenceClassification
)
import os,time
import torch.autograd.functional as Fgrad

CACHE_DIR  = "/data/hf_cache"

class RoBERTaVisualizer(TransformerVisualizer):
    def __init__(self, task):
        super().__init__()
        self.task = task


        
        TOKENIZER = 'roberta-base'
        LOCAL_PATH = os.path.join(CACHE_DIR, "tokenizers",TOKENIZER)
        
        self.tokenizer = RobertaTokenizer.from_pretrained(LOCAL_PATH, local_files_only=True)
        """
        try:
            self.tokenizer = RobertaTokenizer.from_pretrained(LOCAL_PATH, local_files_only=True)
        except Exception as e:
            self.tokenizer = RobertaTokenizer.from_pretrained(TOKENIZER)
            self.tokenizer.save_pretrained(LOCAL_PATH)
        """
        if self.task == 'mlm':
            
            MODEL = "roberta-base"
            LOCAL_PATH = os.path.join(CACHE_DIR, "models",MODEL)
            
            self.model = RobertaForMaskedLM.from_pretrained(  LOCAL_PATH, local_files_only=True )
            """
            try:
                self.model = RobertaForMaskedLM.from_pretrained(  LOCAL_PATH, local_files_only=True )
            except Exception as e:
                self.model = RobertaForMaskedLM.from_pretrained(  MODEL  )
                self.model.save_pretrained(LOCAL_PATH)
            """
        elif self.task == 'sst':

            
            MODEL = 'textattack_roberta-base-SST-2'
            LOCAL_PATH = os.path.join(CACHE_DIR, "models",MODEL)
            
            self.model = RobertaForSequenceClassification.from_pretrained(  LOCAL_PATH, local_files_only=True )
            """
            try:
                self.model = RobertaForSequenceClassification.from_pretrained(  LOCAL_PATH, local_files_only=True )
            except Exception as e:
                self.model = RobertaForSequenceClassification.from_pretrained(  MODEL )
                self.model.save_pretrained(LOCAL_PATH)
            """

        elif self.task == 'mnli':
            MODEL = "roberta-large-mnli"
            LOCAL_PATH = os.path.join(CACHE_DIR, "models",MODEL)

            
            self.model = RobertaForSequenceClassification.from_pretrained(  LOCAL_PATH, local_files_only=True)
            """
            try:
                self.model = RobertaForSequenceClassification.from_pretrained(  LOCAL_PATH, local_files_only=True)
            except Exception as e:
                self.model = RobertaForSequenceClassification.from_pretrained(  MODEL)
                self.model.save_pretrained(LOCAL_PATH)
            """



        self.model.to(self.device)
        self.model.eval()
        self.num_attention_layers = self.model.config.num_hidden_layers


    def tokenize(self, text, hypothesis = ''):

         

        if len(hypothesis) == 0:
            encoded = self.tokenizer(text, return_tensors='pt', return_attention_mask=True,padding=False, truncation=True)
        else:
            encoded = self.tokenizer(text, hypothesis, return_tensors='pt', return_attention_mask=True,padding=False, truncation=True)

        input_ids = encoded['input_ids'].to(self.device)
        attention_mask = encoded['attention_mask'].to(self.device)
        tokens = self.tokenizer.convert_ids_to_tokens(input_ids[0])
        print('First time tokenizing:', tokens, len(tokens))

        response = {
            'input_ids': input_ids,
            'attention_mask': attention_mask,
            'tokens': tokens
        }
        print(response)
        return response

    def predict(self, task, text, hypothesis='', maskID = None):
        
        

        if task == 'mlm':
            inputs = self.tokenizer(text, return_tensors='pt', padding=False, truncation=True)
            if maskID is not None and 0 <= maskID < inputs['input_ids'].size(1):
                inputs['input_ids'][0][maskID] = self.tokenizer.mask_token_id
                mask_index = maskID
            else:
                raise ValueError(f"Invalid maskID {maskID} for input of length {inputs['input_ids'].size(1)}")
            inputs = {k: v.to(self.device) for k, v in inputs.items()}

            with torch.no_grad():
                outputs = self.model(**inputs)
                logits = outputs.logits

            mask_logits = logits[0, mask_index]
            top_probs, top_indices = torch.topk(F.softmax(mask_logits, dim=-1), 10)
            decoded = self.tokenizer.convert_ids_to_tokens(top_indices.tolist())
            return decoded, top_probs

        elif task == 'sst':
            inputs = self.tokenizer(text, return_tensors='pt', padding=False, truncation=True).to(self.device)

            with torch.no_grad():
                outputs = self.model(**inputs)
                logits = outputs.logits
                probs = F.softmax(logits, dim=1).squeeze()

            labels = ["negative", "positive"]
            return labels, probs
        
        elif task == 'mnli': 
            inputs = self.tokenizer(text, hypothesis, return_tensors='pt', padding=True, truncation=True).to(self.device)

            with torch.no_grad():
                outputs = self.model(**inputs)
                logits = outputs.logits
                probs = F.softmax(logits, dim=1).squeeze()

            labels = ["entailment", "neutral", "contradiction"]
            return labels, probs

        else:
            raise NotImplementedError(f"Task '{task}' not supported for RoBERTa")


    def get_all_grad_attn_matrix(self, task, sentence, hypothesis='', maskID = None):
        print(task, sentence,  hypothesis)
        print('Tokenize')
        if task == 'mnli':
            inputs = self.tokenizer(sentence, hypothesis, return_tensors='pt', padding=False, truncation=True)
        elif task == 'mlm':
            inputs = self.tokenizer(sentence,  return_tensors='pt', padding=False, truncation=True)
            if maskID is not None and 0 <= maskID < inputs['input_ids'].size(1):
                inputs['input_ids'][0][maskID] = self.tokenizer.mask_token_id
        else:
            inputs = self.tokenizer(sentence,  return_tensors='pt', padding=False, truncation=True)
        tokens = self.tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
        print(tokens)
        inputs = {k: v.to(self.device) for k, v in inputs.items()}

        print('Input embeddings with grad')
        embedding_layer = self.model.roberta.embeddings.word_embeddings
        inputs_embeds = embedding_layer(inputs["input_ids"])
        inputs_embeds.requires_grad_()

        print('Forward pass')
        outputs = self.model.roberta(
            inputs_embeds=inputs_embeds,
            attention_mask=inputs["attention_mask"],
            output_attentions=True
        )





        attentions = outputs.attentions  # list of [1, heads, seq, seq]

        print('Average attentions per layer')
        mean_attns = [a.squeeze(0).mean(dim=0).detach().cpu() for a in attentions]

        attn_matrices_all = []
        grad_matrices_all = []
        for target_layer in range(len(attentions)):
            #grad_matrix, attn_matrix = self.get_grad_attn_matrix(inputs_embeds, attentions, mean_attns, target_layer)
            
            attn_matrix = mean_attns[target_layer]
            seq_len = attn_matrix.shape[0]
            attn_matrix = attn_matrix[:seq_len, :seq_len]
            attn_matrices_all.append(attn_matrix.tolist())



            start = time.time()
            def scalar_outputs(inputs_embeds):

                outputs = self.model.roberta(
                    inputs_embeds=inputs_embeds,
                    attention_mask=inputs["attention_mask"],
                    output_attentions=True
                )
                attentions = outputs.attentions  
                return attentions[target_layer].mean(dim=0).mean(dim=0).sum(dim=0)
        
            jac = torch.autograd.functional.jacobian(scalar_outputs, inputs_embeds).norm(dim=-1).squeeze(1)
            
            grad_matrices_all.append(jac.tolist())
            print(1,time.time()-start)

            start = time.time()
            grad_norms_list = []

            for k in range(seq_len):
                scalar = attentions[target_layer].mean(dim=0).mean(dim=0)
                scalar = scalar[:, k].sum()
                
                grad = torch.autograd.grad(scalar, inputs_embeds, retain_graph=True)[0].squeeze(0)
                
                grad_norms = grad.norm(dim=1)
                grad_norms_list.append(grad_norms.unsqueeze(1))
            print(2,time.time()-start)

        return grad_matrices_all, attn_matrices_all
    
    def get_grad_attn_matrix(self,inputs_embeds, attentions, mean_attns, target_layer):
        
        attn_matrix = mean_attns[target_layer]
        seq_len = attn_matrix.shape[0]
        attn_layer = attentions[target_layer].squeeze(0).mean(dim=0)  # [seq, seq]
        """
        print('Computing grad norms')
        grad_norms_list = []

        for k in range(seq_len):
            scalar = attn_layer[:, k].sum()
            
            grad = torch.autograd.grad(scalar, inputs_embeds, retain_graph=True)[0].squeeze(0)
            
            grad_norms = grad.norm(dim=1)
            grad_norms_list.append(grad_norms.unsqueeze(1))
        
        grad_matrix = torch.cat(grad_norms_list, dim=1)
        



        grad_matrix = grad_matrix[:seq_len, :seq_len]
        """
        attn_matrix = attn_matrix[:seq_len, :seq_len]
        grad_matrix = attn_matrix
        
        return grad_matrix, attn_matrix