import json import os import time from random import randint import psutil import streamlit as st import torch from transformers import ( AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer, pipeline, set_seed, ) device = torch.cuda.device_count() - 1 @st.cache(suppress_st_warning=True, allow_output_mutation=True) def load_model(model_name, task): os.environ["TOKENIZERS_PARALLELISM"] = "false" try: if not os.path.exists(".streamlit/secrets.toml"): raise FileNotFoundError access_token = st.secrets.get("netherator") except FileNotFoundError: access_token = os.environ.get("HF_ACCESS_TOKEN", None) tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=access_token) if tokenizer.pad_token is None: print("Adding pad_token to the tokenizer") tokenizer.pad_token = tokenizer.eos_token auto_model_class = ( AutoModelForSeq2SeqLM if "translation" in task else AutoModelForCausalLM ) model = auto_model_class.from_pretrained(model_name, use_auth_token=access_token) if device != -1: model.to(f"cuda:{device}") return tokenizer, model class ModelTask: def __init__(self, p): self.model_name = p["model_name"] self.task = p["task"] self.desc = p["desc"] self.tokenizer = None self.model = None self.pipeline = None self.load() def load(self): if not self.pipeline: print(f"Loading model {self.model_name}") self.tokenizer, self.model = load_model(self.model_name, self.task) self.pipeline = pipeline( task=self.task, model=self.model, tokenizer=self.tokenizer, device=device, ) def get_text(self, text: str, **generate_kwargs) -> str: return self.pipeline(text, **generate_kwargs) PIPELINES = [ { "model_name": "yhavinga/gpt-neo-125M-dutch-nedd", "desc": "Dutch GPTNeo Small", "task": "text-generation", "pipeline": None, }, { "model_name": "yhavinga/gpt2-medium-dutch-nedd", "desc": "Dutch GPT2 Medium", "task": "text-generation", "pipeline": None, }, ] def instantiate_models(): for p in PIPELINES: p["pipeline"] = ModelTask(p) with st.spinner(text=f"Loading the model {p['desc']} ..."): p["pipeline"].load() def main(): st.set_page_config( # Alternate names: setup_page, page, layout page_title="Netherator", # String or None. Strings get appended with "• Streamlit". layout="wide", # Can be "centered" or "wide". In the future also "dashboard", etc. initial_sidebar_state="expanded", # Can be "auto", "expanded", "collapsed" page_icon="📚", # String, anything supported by st.image, or None. ) instantiate_models() with open("style.css") as f: st.markdown(f"", unsafe_allow_html=True) st.sidebar.image("demon-reading-Stewart-Orr.png", width=200) st.sidebar.markdown( """# Netherator Nederlandse verhalenverteller""" ) model_desc = st.sidebar.selectbox( "Model", [p["desc"] for p in PIPELINES], index=1 ) st.sidebar.title("Parameters:") if "prompt_box" not in st.session_state: st.session_state["prompt_box"] = "Het was een koude winterdag" st.session_state["text"] = st.text_area("Enter text", st.session_state.prompt_box) max_length = st.sidebar.number_input( "Lengte van de tekst", value=200, max_value=512, ) no_repeat_ngram_size = st.sidebar.number_input( "No-repeat NGram size", min_value=1, max_value=5, value=3 ) repetition_penalty = st.sidebar.number_input( "Repetition penalty", min_value=0.0, max_value=5.0, value=1.2, step=0.1 ) num_return_sequences = st.sidebar.number_input( "Num return sequences", min_value=1, max_value=5, value=1 ) seed_placeholder = st.sidebar.empty() if "seed" not in st.session_state: print(f"Session state {st.session_state} does not contain seed") st.session_state["seed"] = 4162549114 print(f"Seed is set to: {st.session_state['seed']}") seed = seed_placeholder.number_input( "Seed", min_value=0, max_value=2 ** 32 - 1, value=st.session_state["seed"] ) def set_random_seed(): st.session_state["seed"] = randint(0, 2 ** 32 - 1) seed = seed_placeholder.number_input( "Seed", min_value=0, max_value=2 ** 32 - 1, value=st.session_state["seed"] ) print(f"New random seed set to: {seed}") if st.button("New random seed?"): set_random_seed() if sampling_mode := st.sidebar.selectbox( "select a Mode", index=0, options=["Top-k Sampling", "Beam Search"] ): if sampling_mode == "Beam Search": num_beams = st.sidebar.number_input( "Num beams", min_value=1, max_value=10, value=4 ) length_penalty = st.sidebar.number_input( "Length penalty", min_value=0.0, max_value=2.0, value=1.0, step=0.1 ) params = { "max_length": max_length, "no_repeat_ngram_size": no_repeat_ngram_size, "repetition_penalty": repetition_penalty, "num_return_sequences": num_return_sequences, "num_beams": num_beams, "early_stopping": True, "length_penalty": length_penalty, } else: top_k = st.sidebar.number_input("Top K", min_value=0, max_value=100, value=50) top_p = st.sidebar.number_input( "Top P", min_value=0.0, max_value=1.0, value=0.95, step=0.05 ) temperature = st.sidebar.number_input( "Temperature", min_value=0.05, max_value=1.0, value=1.0, step=0.05 ) params = { "max_length": max_length, "no_repeat_ngram_size": no_repeat_ngram_size, "repetition_penalty": repetition_penalty, "num_return_sequences": num_return_sequences, "do_sample": True, "top_k": top_k, "top_p": top_p, "temperature": temperature, } st.sidebar.markdown( """For an explanation of the parameters, head over to the [Huggingface blog post about text generation](https://huggingface.co/blog/how-to-generate) and the [Huggingface text generation interface doc](https://huggingface.co/transformers/main_classes/model.html?highlight=generate#transformers.generation_utils.GenerationMixin.generate). """ ) if st.button("Run"): estimate = max_length / 18 if device == -1: ## cpu estimate = estimate * (1 + 0.7 * (num_return_sequences - 1)) if sampling_mode == "Beam Search": estimate = estimate * (1.1 + 0.3 * (num_beams - 1)) else: ## gpu estimate = estimate * (1 + 0.1 * (num_return_sequences - 1)) estimate = 0.5 + estimate / 5 if sampling_mode == "Beam Search": estimate = estimate * (1.0 + 0.1 * (num_beams - 1)) estimate = int(estimate) with st.spinner( text=f"Please wait ~ {estimate} second{'s' if estimate != 1 else ''} while getting results ..." ): memory = psutil.virtual_memory() generator = next( ( x["pipeline"] for x in PIPELINES if x["desc"] == model_desc ), None, ) set_seed(seed) time_start = time.time() result = generator.get_text(text=st.session_state.text, **params) time_end = time.time() time_diff = time_end - time_start st.subheader("Result") for text in result: st.write(text.get("generated_text").replace("\n", " \n")) # st.text("*Translation*") # translation = translate(result, "en", "nl") # st.write(translation.replace("\n", " \n")) # info = f""" --- *Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB* *Text generated using seed {seed} in {time_diff:.5} seconds* """ st.write(info) params["seed"] = seed params["prompt"] = st.session_state.text params["model"] = generator.model_name params_text = json.dumps(params) print(params_text) st.json(params_text) if __name__ == "__main__": main()