File size: 8,961 Bytes
4c45953
 
 
 
 
 
 
 
a9f2b23
 
 
 
 
 
 
4c45953
 
 
 
 
a9f2b23
4c45953
 
 
 
 
 
 
 
a9f2b23
 
 
 
 
4c45953
a9f2b23
4c45953
 
 
 
 
a9f2b23
 
 
 
 
4c45953
 
a9f2b23
 
4c45953
 
a9f2b23
 
 
 
 
4c45953
 
 
 
 
 
a9f2b23
4c45953
 
a9f2b23
4c45953
 
 
a9f2b23
 
4c45953
 
 
 
a9f2b23
 
4c45953
 
 
 
 
a9f2b23
 
 
 
4c45953
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9f2b23
4c45953
 
 
a9f2b23
4c45953
 
 
 
 
 
 
 
 
 
 
a9f2b23
4c45953
 
 
 
 
 
 
 
 
 
 
 
5cf4ee2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c45953
5cf4ee2
4c45953
 
 
 
 
 
a9f2b23
4c45953
 
 
 
 
 
 
 
 
 
 
a9f2b23
4c45953
 
 
 
a9f2b23
4c45953
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cf4ee2
4c45953
 
a9f2b23
4c45953
a9f2b23
 
4c45953
 
 
 
5cf4ee2
4c45953
a9f2b23
4c45953
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9f2b23
4c45953
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import json
import os
import time
from random import randint

import psutil
import streamlit as st
import torch
from transformers import (
    AutoModelForCausalLM,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    pipeline,
    set_seed,
)

device = torch.cuda.device_count() - 1


@st.cache(suppress_st_warning=True, allow_output_mutation=True)
def load_model(model_name, task):
    os.environ["TOKENIZERS_PARALLELISM"] = "false"
    try:
        if not os.path.exists(".streamlit/secrets.toml"):
            raise FileNotFoundError
        access_token = st.secrets.get("netherator")
    except FileNotFoundError:
        access_token = os.environ.get("HF_ACCESS_TOKEN", None)
    tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=access_token)
    if tokenizer.pad_token is None:
        print("Adding pad_token to the tokenizer")
        tokenizer.pad_token = tokenizer.eos_token
    auto_model_class = (
        AutoModelForSeq2SeqLM if "translation" in task else AutoModelForCausalLM
    )
    model = auto_model_class.from_pretrained(model_name, use_auth_token=access_token)
    if device != -1:
        model.to(f"cuda:{device}")
    return tokenizer, model


class ModelTask:
    def __init__(self, p):
        self.model_name = p["model_name"]
        self.task = p["task"]
        self.desc = p["desc"]
        self.tokenizer = None
        self.model = None
        self.pipeline = None
        self.load()

    def load(self):
        if not self.pipeline:
            print(f"Loading model {self.model_name}")
            self.tokenizer, self.model = load_model(self.model_name, self.task)
            self.pipeline = pipeline(
                task=self.task,
                model=self.model,
                tokenizer=self.tokenizer,
                device=device,
            )

    def get_text(self, text: str, **generate_kwargs) -> str:
        return self.pipeline(text, **generate_kwargs)


PIPELINES = [
    {
        "model_name": "yhavinga/gpt-neo-125M-dutch-nedd",
        "desc": "Dutch GPTNeo Small",
        "task": "text-generation",
        "pipeline": None,
    },
    {
        "model_name": "yhavinga/gpt2-medium-dutch-nedd",
        "desc": "Dutch GPT2 Medium",
        "task": "text-generation",
        "pipeline": None,
    },
]


def instantiate_models():
    for p in PIPELINES:
        p["pipeline"] = ModelTask(p)
        with st.spinner(text=f"Loading the model {p['desc']} ..."):
            p["pipeline"].load()


def main():
    st.set_page_config(  # Alternate names: setup_page, page, layout
        page_title="Netherator",  # String or None. Strings get appended with "• Streamlit".
        layout="wide",  # Can be "centered" or "wide". In the future also "dashboard", etc.
        initial_sidebar_state="expanded",  # Can be "auto", "expanded", "collapsed"
        page_icon="📚",  # String, anything supported by st.image, or None.
    )
    instantiate_models()

    with open("style.css") as f:
        st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)

    st.sidebar.image("demon-reading-Stewart-Orr.png", width=200)
    st.sidebar.markdown(
        """# Netherator
    Nederlandse verhalenverteller"""
    )

    model_desc = st.sidebar.selectbox(
        "Model", [p["desc"] for p in PIPELINES], index=1
    )

    st.sidebar.title("Parameters:")

    if "prompt_box" not in st.session_state:
        st.session_state["prompt_box"] = "Het was een koude winterdag"

    st.session_state["text"] = st.text_area("Enter text", st.session_state.prompt_box)

    max_length = st.sidebar.number_input(
        "Lengte van de tekst",
        value=200,
        max_value=512,
    )
    no_repeat_ngram_size = st.sidebar.number_input(
        "No-repeat NGram size", min_value=1, max_value=5, value=3
    )
    repetition_penalty = st.sidebar.number_input(
        "Repetition penalty", min_value=0.0, max_value=5.0, value=1.2, step=0.1
    )
    num_return_sequences = st.sidebar.number_input(
        "Num return sequences", min_value=1, max_value=5, value=1
    )

    seed_placeholder = st.sidebar.empty()
    if "seed" not in st.session_state:
        print(f"Session state {st.session_state} does not contain seed")
        st.session_state["seed"] = 4162549114
        print(f"Seed is set to: {st.session_state['seed']}")

    seed = seed_placeholder.number_input(
        "Seed", min_value=0, max_value=2 ** 32 - 1, value=st.session_state["seed"]
    )

    def set_random_seed():
        st.session_state["seed"] = randint(0, 2 ** 32 - 1)
        seed = seed_placeholder.number_input(
            "Seed", min_value=0, max_value=2 ** 32 - 1, value=st.session_state["seed"]
        )
        print(f"New random seed set to: {seed}")

    if st.button("New random seed?"):
        set_random_seed()

    if sampling_mode := st.sidebar.selectbox(
            "select a Mode", index=0, options=["Top-k Sampling", "Beam Search"]
    ):
        if sampling_mode == "Beam Search":
            num_beams = st.sidebar.number_input(
                "Num beams", min_value=1, max_value=10, value=4
            )
            length_penalty = st.sidebar.number_input(
                "Length penalty", min_value=0.0, max_value=2.0, value=1.0, step=0.1
            )
            params = {
                "max_length": max_length,
                "no_repeat_ngram_size": no_repeat_ngram_size,
                "repetition_penalty": repetition_penalty,
                "num_return_sequences": num_return_sequences,
                "num_beams": num_beams,
                "early_stopping": True,
                "length_penalty": length_penalty,
            }
        else:
            top_k = st.sidebar.number_input("Top K", min_value=0, max_value=100, value=50)
            top_p = st.sidebar.number_input(
                "Top P", min_value=0.0, max_value=1.0, value=0.95, step=0.05
            )
            temperature = st.sidebar.number_input(
                "Temperature", min_value=0.05, max_value=1.0, value=1.0, step=0.05
            )
            params = {
                "max_length": max_length,
                "no_repeat_ngram_size": no_repeat_ngram_size,
                "repetition_penalty": repetition_penalty,
                "num_return_sequences": num_return_sequences,
                "do_sample": True,
                "top_k": top_k,
                "top_p": top_p,
                "temperature": temperature,
            }

    st.sidebar.markdown(
        """For an explanation of the parameters, head over to the [Huggingface blog post about text generation](https://huggingface.co/blog/how-to-generate)
and the [Huggingface text generation interface doc](https://huggingface.co/transformers/main_classes/model.html?highlight=generate#transformers.generation_utils.GenerationMixin.generate).
"""
    )

    if st.button("Run"):
        estimate = max_length / 18
        if device == -1:
            ## cpu
            estimate = estimate * (1 + 0.7 * (num_return_sequences - 1))
            if sampling_mode == "Beam Search":
                estimate = estimate * (1.1 + 0.3 * (num_beams - 1))
        else:
            ## gpu
            estimate = estimate * (1 + 0.1 * (num_return_sequences - 1))
            estimate = 0.5 + estimate / 5
            if sampling_mode == "Beam Search":
                estimate = estimate * (1.0 + 0.1 * (num_beams - 1))
        estimate = int(estimate)

        with st.spinner(
                text=f"Please wait ~ {estimate} second{'s' if estimate != 1 else ''} while getting results ..."
        ):
            memory = psutil.virtual_memory()
            generator = next(
                (
                    x["pipeline"]
                    for x in PIPELINES
                    if x["desc"] == model_desc
                ),
                None,
            )
            set_seed(seed)
            time_start = time.time()
            result = generator.get_text(text=st.session_state.text, **params)
            time_end = time.time()
            time_diff = time_end - time_start

            st.subheader("Result")
            for text in result:
                st.write(text.get("generated_text").replace("\n", "  \n"))

            # st.text("*Translation*")
            # translation = translate(result, "en", "nl")
            # st.write(translation.replace("\n", "  \n"))
            #
            info = f"""
            ---
            *Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*        
            *Text generated using seed {seed} in {time_diff:.5} seconds*
            """
            st.write(info)

            params["seed"] = seed
            params["prompt"] = st.session_state.text
            params["model"] = generator.model_name
            params_text = json.dumps(params)
            print(params_text)
            st.json(params_text)


if __name__ == "__main__":
    main()