Spaces:
Running
on
Zero
Running
on
Zero
load the default models on start
Browse files
app.py
CHANGED
@@ -5,26 +5,25 @@ import orjson
|
|
5 |
import torch
|
6 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, AutoModelForCausalLM, AutoTokenizer
|
7 |
|
|
|
|
|
|
|
8 |
@spaces.GPU(duration=60)
|
9 |
-
def transcribe_audio(audio
|
|
|
10 |
if audio is None:
|
11 |
return "Please upload an audio file."
|
12 |
-
if
|
13 |
return "Please select a model."
|
14 |
|
15 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
16 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
17 |
|
18 |
-
|
19 |
-
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
20 |
-
)
|
21 |
-
model.to(device)
|
22 |
-
|
23 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
24 |
|
25 |
pipe = pipeline(
|
26 |
"automatic-speech-recognition",
|
27 |
-
model=
|
28 |
tokenizer=processor.tokenizer,
|
29 |
feature_extractor=processor.feature_extractor,
|
30 |
max_new_tokens=128,
|
@@ -38,18 +37,19 @@ def transcribe_audio(audio, model_id):
|
|
38 |
return result["text"]
|
39 |
|
40 |
@spaces.GPU(duration=120)
|
41 |
-
def proofread(text
|
|
|
42 |
if text is None:
|
43 |
return "Please provide the transcribed text for proofreading."
|
44 |
|
45 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
46 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
47 |
|
48 |
messages = [
|
49 |
{"role": "system", "content": "用繁體中文語體文整理這段文字,在最後加上整段文字的重點。"},
|
50 |
{"role": "user", "content": text},
|
51 |
]
|
52 |
-
pipe = pipeline("text-generation", model=
|
53 |
llm_output = pipe(messages)
|
54 |
|
55 |
# Extract the generated text
|
@@ -61,27 +61,44 @@ def proofread(text, model_id):
|
|
61 |
proofread_text = assistant_content
|
62 |
return proofread_text
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
with gr.Blocks() as demo:
|
65 |
gr.Markdown("""
|
66 |
# Audio Transcription and Proofreading
|
67 |
-
1.
|
68 |
-
2.
|
69 |
-
3.
|
|
|
70 |
""")
|
71 |
|
72 |
with gr.Row():
|
73 |
-
audio = gr.Audio(sources="upload", type="filepath")
|
74 |
transcribe_model_dropdown = gr.Dropdown(choices=["openai/whisper-large-v3", "alvanlii/whisper-small-cantonese"], value="alvanlii/whisper-small-cantonese", label="Select Transcription Model")
|
75 |
proofread_model_dropdown = gr.Dropdown(choices=["hfl/llama-3-chinese-8b-instruct-v3"], value="hfl/llama-3-chinese-8b-instruct-v3", label="Select Proofreading Model")
|
|
|
76 |
|
|
|
|
|
77 |
transcribe_button = gr.Button("Transcribe")
|
78 |
transcribed_text = gr.Textbox(label="Transcribed Text")
|
79 |
|
80 |
proofread_button = gr.Button("Proofread")
|
81 |
proofread_output = gr.Textbox(label="Proofread Text")
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
86 |
|
87 |
demo.launch()
|
|
|
5 |
import torch
|
6 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, AutoModelForCausalLM, AutoTokenizer
|
7 |
|
8 |
+
transcribe_model = None
|
9 |
+
proofread_model = None
|
10 |
+
|
11 |
@spaces.GPU(duration=60)
|
12 |
+
def transcribe_audio(audio):
|
13 |
+
global transcribe_model
|
14 |
if audio is None:
|
15 |
return "Please upload an audio file."
|
16 |
+
if transcribe_model is None:
|
17 |
return "Please select a model."
|
18 |
|
19 |
+
device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.mps.is_available() else "cpu"
|
20 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
21 |
|
22 |
+
processor = AutoProcessor.from_pretrained(transcribe_model)
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
pipe = pipeline(
|
25 |
"automatic-speech-recognition",
|
26 |
+
model=transcribe_model,
|
27 |
tokenizer=processor.tokenizer,
|
28 |
feature_extractor=processor.feature_extractor,
|
29 |
max_new_tokens=128,
|
|
|
37 |
return result["text"]
|
38 |
|
39 |
@spaces.GPU(duration=120)
|
40 |
+
def proofread(text):
|
41 |
+
global proofread_model
|
42 |
if text is None:
|
43 |
return "Please provide the transcribed text for proofreading."
|
44 |
|
45 |
+
device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.mps.is_available() else "cpu"
|
46 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
47 |
|
48 |
messages = [
|
49 |
{"role": "system", "content": "用繁體中文語體文整理這段文字,在最後加上整段文字的重點。"},
|
50 |
{"role": "user", "content": text},
|
51 |
]
|
52 |
+
pipe = pipeline("text-generation", model=proofread_model)
|
53 |
llm_output = pipe(messages)
|
54 |
|
55 |
# Extract the generated text
|
|
|
61 |
proofread_text = assistant_content
|
62 |
return proofread_text
|
63 |
|
64 |
+
def load_models(transcribe_model_id, proofread_model_id):
|
65 |
+
global transcribe_model, proofread_model
|
66 |
+
device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.mps.is_available() else "cpu"
|
67 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
68 |
+
|
69 |
+
transcribe_model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
70 |
+
transcribe_model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
71 |
+
)
|
72 |
+
transcribe_model.to(device)
|
73 |
+
|
74 |
+
proofread_model = AutoModelForCausalLM.from_pretrained(proofread_model_id)
|
75 |
+
proofread_model.to(device)
|
76 |
+
|
77 |
with gr.Blocks() as demo:
|
78 |
gr.Markdown("""
|
79 |
# Audio Transcription and Proofreading
|
80 |
+
1. Select models for transcription and proofreading
|
81 |
+
2. Upload an audio file (Wait for the file to be fully loaded first)
|
82 |
+
3. Transcribe the audio
|
83 |
+
4. Proofread the transcribed text
|
84 |
""")
|
85 |
|
86 |
with gr.Row():
|
|
|
87 |
transcribe_model_dropdown = gr.Dropdown(choices=["openai/whisper-large-v3", "alvanlii/whisper-small-cantonese"], value="alvanlii/whisper-small-cantonese", label="Select Transcription Model")
|
88 |
proofread_model_dropdown = gr.Dropdown(choices=["hfl/llama-3-chinese-8b-instruct-v3"], value="hfl/llama-3-chinese-8b-instruct-v3", label="Select Proofreading Model")
|
89 |
+
load_button = gr.Button("Load Models")
|
90 |
|
91 |
+
audio = gr.Audio(sources="upload", type="filepath")
|
92 |
+
|
93 |
transcribe_button = gr.Button("Transcribe")
|
94 |
transcribed_text = gr.Textbox(label="Transcribed Text")
|
95 |
|
96 |
proofread_button = gr.Button("Proofread")
|
97 |
proofread_output = gr.Textbox(label="Proofread Text")
|
98 |
|
99 |
+
load_button.click(load_models, inputs=[transcribe_model_dropdown, proofread_model_dropdown])
|
100 |
+
transcribe_button.click(transcribe_audio, inputs=audio, outputs=transcribed_text)
|
101 |
+
proofread_button.click(proofread, inputs=transcribed_text, outputs=proofread_output)
|
102 |
+
transcribed_text.change(proofread, inputs=transcribed_text, outputs=proofread_output)
|
103 |
|
104 |
demo.launch()
|