Spaces:
Runtime error
Runtime error
| import datetime | |
| import pathlib | |
| from typing import Optional | |
| import torch | |
| from diffusers.utils import is_accelerate_available | |
| from ..logging import get_logger | |
| from ..utils import get_device_info | |
| from .base import BaseParallelBackend | |
| from .utils import apply_ddp_accelerate | |
| if not is_accelerate_available(): | |
| raise ImportError( | |
| "Please install the accelerate package using `pip install accelerate` to use the AccelerateParallelBackend." | |
| ) | |
| from accelerate import Accelerator | |
| from accelerate.data_loader import DataLoader | |
| from accelerate.utils import ( | |
| DataLoaderConfiguration, | |
| DistributedDataParallelKwargs, | |
| InitProcessGroupKwargs, | |
| ProjectConfiguration, | |
| ) | |
| logger = get_logger() | |
| _device_type, _device_module = get_device_info() | |
| class AccelerateParallelBackend(BaseParallelBackend): | |
| def __init__( | |
| self, | |
| world_size: int, | |
| pp_degree: int = 1, | |
| dp_degree: int = 1, | |
| dp_shards: int = -1, | |
| cp_degree: int = 1, | |
| tp_degree: int = 1, | |
| backend: str = "nccl", | |
| timeout: int = 180, | |
| logging_dir: Optional[str] = None, | |
| output_dir: Optional[str] = None, | |
| gradient_accumulation_steps: Optional[int] = None, | |
| ) -> None: | |
| super().__init__() | |
| self._world_size = world_size | |
| self._pp_degree = pp_degree | |
| self._dp_degree = dp_degree | |
| self._dp_shards = dp_shards | |
| self._cp_degree = cp_degree | |
| self._tp_degree = tp_degree | |
| self._output_dir = pathlib.Path(output_dir) if output_dir is not None else None | |
| self._logging_dir = ( | |
| self._output_dir / logging_dir if output_dir is not None and logging_dir is not None else None | |
| ) | |
| self._backend = backend | |
| self._timeout = timeout | |
| self._gradient_accumulation_steps = gradient_accumulation_steps | |
| if pp_degree > 1 or dp_shards > 1 or cp_degree > 1 or tp_degree > 1: | |
| raise ValueError( | |
| "AccelerateParallelBackend does not support anything but Distributed Data Parallelism at the moment." | |
| ) | |
| if dp_degree != world_size: | |
| raise ValueError("Data parallel degree must be equal to world size.") | |
| self._accelerator: Accelerator = None | |
| self._mesh: torch.distributed.DeviceMesh = None | |
| def apply_ddp(self, model: torch.nn.Module, *args, **kwargs) -> torch.nn.Module: | |
| project_config = None | |
| ddp_kwargs = None | |
| init_process_group_kwargs = None | |
| if self._accelerator is None: | |
| project_config = ProjectConfiguration(project_dir=self._output_dir, logging_dir=self._logging_dir) | |
| ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=False) | |
| dataloader_config = DataLoaderConfiguration( | |
| split_batches=False, dispatch_batches=False, use_stateful_dataloader=True | |
| ) | |
| init_process_group_kwargs = InitProcessGroupKwargs( | |
| backend=self._backend, timeout=datetime.timedelta(seconds=self._timeout) | |
| ) | |
| self._accelerator, model = apply_ddp_accelerate( | |
| model, | |
| project_config, | |
| ddp_kwargs, | |
| init_process_group_kwargs, | |
| dataloader_config, | |
| self._gradient_accumulation_steps, | |
| accelerator=self._accelerator, | |
| ) | |
| logger.debug("Applied AccelerateParallel::apply_ddp to model.") | |
| return model | |
| def prepare_dataset(self, dataset: torch.utils.data.IterableDataset) -> torch.utils.data.IterableDataset: | |
| logger.debug("AccelerateParallelBackend::prepare_dataset completed!") | |
| return dataset | |
| def prepare_dataloader( | |
| self, | |
| dataset: torch.utils.data.IterableDataset, | |
| batch_size: int = 1, | |
| num_workers: int = 0, | |
| pin_memory: bool = False, | |
| ) -> DataLoader: | |
| dataloader = torch.utils.data.DataLoader( | |
| dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=pin_memory | |
| ) | |
| dataloader = self._accelerator.prepare_data_loader(dataloader) | |
| logger.debug("AccelerateParallelBackend::prepare_dataloader completed!") | |
| return dataloader | |
| def prepare_optimizer(self, optimizer, lr_scheduler): | |
| optimizer = self._accelerator.prepare_optimizer(optimizer) | |
| lr_scheduler = self._accelerator.prepare_scheduler(lr_scheduler) | |
| return optimizer, lr_scheduler | |
| def get_mesh(self, name: Optional[str] = None) -> torch.distributed.DeviceMesh: | |
| def _get_mesh(): | |
| if name is None: | |
| return self._mesh | |
| try: | |
| return self._mesh[name] | |
| except (KeyError, RuntimeError): | |
| return self._mesh | |
| if self._mesh is not None: | |
| return _get_mesh() | |
| mesh_list = [("dp_replicate", self._dp_degree), ("dp_shard", self._dp_shards)] | |
| mesh_list = [(name, degree) for name, degree in mesh_list if degree > 1] | |
| names = [x[0] for x in mesh_list] | |
| degrees = [x[1] for x in mesh_list] | |
| mesh = torch.distributed.device_mesh.init_device_mesh(_device_type, mesh_shape=degrees, mesh_dim_names=names) | |
| dp_mesh_names, dp_cp_mesh_names, dp_shard_cp_mesh_names = [], [], [] | |
| if self.data_replication_enabled: | |
| dp_mesh_names.append("dp_replicate") | |
| dp_cp_mesh_names.append("dp_replicate") | |
| if self.data_sharding_enabled: | |
| dp_mesh_names.append("dp_shard") | |
| dp_cp_mesh_names.append("dp_shard") | |
| dp_shard_cp_mesh_names.append("dp_shard") | |
| if self.context_parallel_enabled: | |
| dp_cp_mesh_names.append("cp") | |
| dp_shard_cp_mesh_names.append("cp") | |
| if len(dp_mesh_names) > 0: | |
| mesh[tuple(dp_mesh_names)]._flatten(mesh_dim_name="dp") | |
| if len(dp_cp_mesh_names) > 0: | |
| mesh[tuple(dp_cp_mesh_names)]._flatten(mesh_dim_name="dp_cp") | |
| if len(dp_shard_cp_mesh_names) > 0: | |
| mesh[tuple(dp_shard_cp_mesh_names)]._flatten(mesh_dim_name="dp_shard_cp") | |
| logger.debug(f"Device mesh: {mesh}") | |
| self._mesh = mesh | |
| return _get_mesh() | |
| def world_size(self): | |
| return self._accelerator.num_processes | |
| def rank(self): | |
| return self._accelerator.process_index | |
| def local_rank(self): | |
| return self._accelerator.local_process_index | |
| def is_main_process(self): | |
| r"""Returns `True` if the current process is the main process on the master node.""" | |
| return self._accelerator.is_main_process | |
| def is_local_main_process(self): | |
| r"""Returns `True` if the current process is the main process on local node.""" | |
| return self._accelerator.is_local_main_process | |
| def device(self): | |
| return self._accelerator.device | |
| def wait_for_everyone(self): | |
| self._accelerator.wait_for_everyone() | |
| def destroy(self): | |
| self._accelerator.end_training() | |
| def pipeline_parallel_enabled(self): | |
| return self._pp_degree > 1 | |
| def data_parallel_enabled(self): | |
| return self._dp_degree > 1 or self._dp_shards > 1 | |
| def data_replication_enabled(self): | |
| return self._dp_degree > 1 | |
| def data_sharding_enabled(self): | |
| return self._dp_shards > 1 | |
| def context_parallel_enabled(self): | |
| return self._cp_degree > 1 | |
| def tensor_parallel_enabled(self): | |
| return self._tp_degree > 1 | |