Spaces:
Runtime error
Runtime error
File size: 43,644 Bytes
0ad7e2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 |
import platform
import subprocess
#import sys
#print("python = ", sys.version)
# can be "Linux", "Darwin"
if platform.system() == "Linux":
# for some reason it says "pip not found"
# and also "pip3 not found"
# subprocess.run(
# "pip install flash-attn --no-build-isolation",
#
# # hmm... this should be False, since we are in a CUDA environment, no?
# env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
#
# shell=True,
# )
pass
import gradio as gr
from pathlib import Path
import logging
import mimetypes
import shutil
import os
import traceback
import asyncio
import tempfile
import zipfile
from typing import Any, Optional, Dict, List, Union, Tuple
from typing import AsyncGenerator
from ..services import TrainingService, CaptioningService, SplittingService, ImportService
from ..config import (
STORAGE_PATH, VIDEOS_TO_SPLIT_PATH, STAGING_PATH,
TRAINING_PATH, LOG_FILE_PATH, TRAINING_PRESETS, TRAINING_VIDEOS_PATH, MODEL_PATH, OUTPUT_PATH, DEFAULT_CAPTIONING_BOT_INSTRUCTIONS,
DEFAULT_PROMPT_PREFIX, HF_API_TOKEN, ASK_USER_TO_DUPLICATE_SPACE, MODEL_TYPES, SMALL_TRAINING_BUCKETS
)
from ..utils import make_archive, count_media_files, format_media_title, is_image_file, is_video_file, validate_model_repo, format_time, copy_files_to_training_dir, prepare_finetrainers_dataset, TrainingLogParser
from ..tabs import ImportTab, SplitTab, CaptionTab, TrainTab, ManageTab
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
httpx_logger = logging.getLogger('httpx')
httpx_logger.setLevel(logging.WARN)
class VideoTrainerUI:
def __init__(self):
"""Initialize services and tabs"""
# Initialize core services
self.trainer = TrainingService()
self.splitter = SplittingService()
self.importer = ImportService()
self.captioner = CaptioningService()
self._should_stop_captioning = False
# Recovery status from any interrupted training
recovery_result = self.trainer.recover_interrupted_training()
self.recovery_status = recovery_result.get("status", "unknown")
self.ui_updates = recovery_result.get("ui_updates", {})
self.log_parser = TrainingLogParser()
# Shared state for tabs
self.state = {
"recovery_result": recovery_result
}
# Initialize tabs dictionary (will be populated in create_ui)
self.tabs = {}
self.tabs_component = None
def create_ui(self):
"""Create the main Gradio UI"""
with gr.Blocks(title="🎥 Video Model Studio") as app:
gr.Markdown("# 🎥 Video Model Studio")
# Create main tabs component
with gr.Tabs() as self.tabs_component:
# Initialize tab objects
self.tabs["import_tab"] = ImportTab(self)
self.tabs["split_tab"] = SplitTab(self)
self.tabs["caption_tab"] = CaptionTab(self)
self.tabs["train_tab"] = TrainTab(self)
self.tabs["manage_tab"] = ManageTab(self)
# Create tab UI components
for tab_id, tab_obj in self.tabs.items():
tab_obj.create(self.tabs_component)
# Connect event handlers
for tab_id, tab_obj in self.tabs.items():
tab_obj.connect_events()
# Add app-level timers for auto-refresh functionality
self._add_timers()
# Initialize app state on load
app.load(
fn=self.initialize_app_state,
outputs=[
self.tabs["split_tab"].components["video_list"],
self.tabs["caption_tab"].components["training_dataset"],
self.tabs["train_tab"].components["start_btn"],
self.tabs["train_tab"].components["stop_btn"],
self.tabs["train_tab"].components["pause_resume_btn"],
self.tabs["train_tab"].components["training_preset"],
self.tabs["train_tab"].components["model_type"],
self.tabs["train_tab"].components["lora_rank"],
self.tabs["train_tab"].components["lora_alpha"],
self.tabs["train_tab"].components["num_epochs"],
self.tabs["train_tab"].components["batch_size"],
self.tabs["train_tab"].components["learning_rate"],
self.tabs["train_tab"].components["save_iterations"]
]
)
return app
def _add_timers(self):
"""Add auto-refresh timers to the UI"""
# Status update timer (every 1 second)
status_timer = gr.Timer(value=1)
status_timer.tick(
fn=self.get_latest_status_message_logs_and_button_labels,
outputs=[
self.tabs["train_tab"].components["status_box"],
self.tabs["train_tab"].components["log_box"],
self.tabs["train_tab"].components["start_btn"],
self.tabs["train_tab"].components["stop_btn"],
self.tabs["train_tab"].components["pause_resume_btn"]
]
)
# Dataset refresh timer (every 5 seconds)
dataset_timer = gr.Timer(value=5)
dataset_timer.tick(
fn=self.refresh_dataset,
outputs=[
self.tabs["split_tab"].components["video_list"],
self.tabs["caption_tab"].components["training_dataset"]
]
)
# Titles update timer (every 6 seconds)
titles_timer = gr.Timer(value=6)
titles_timer.tick(
fn=self.update_titles,
outputs=[
self.tabs["split_tab"].components["split_title"],
self.tabs["caption_tab"].components["caption_title"],
self.tabs["train_tab"].components["train_title"]
]
)
def handle_global_stop(self):
"""Handle the global stop button click"""
result = self.stop_all_and_clear()
# Format the details for display
status = result["status"]
details = "\n".join(f"{k}: {v}" for k, v in result["details"].items())
full_status = f"{status}\n\nDetails:\n{details}"
# Get fresh lists after cleanup
videos = self.splitter.list_unprocessed_videos()
clips = self.list_training_files_to_caption()
return {
self.tabs["manage_tab"].components["global_status"]: gr.update(value=full_status, visible=True),
self.tabs["split_tab"].components["video_list"]: videos,
self.tabs["caption_tab"].components["training_dataset"]: clips,
self.tabs["train_tab"].components["status_box"]: "Training stopped and data cleared",
self.tabs["train_tab"].components["log_box"]: "",
self.tabs["split_tab"].components["detect_status"]: "Scene detection stopped",
self.tabs["import_tab"].components["import_status"]: "All data cleared",
self.tabs["caption_tab"].components["preview_status"]: "Captioning stopped"
}
def upload_to_hub(self, repo_id: str) -> str:
"""Upload model to HuggingFace Hub"""
if not repo_id:
return "Error: Repository ID is required"
# Validate repository name
validation = validate_model_repo(repo_id)
if validation["error"]:
return f"Error: {validation['error']}"
# Check if we have a model to upload
if not self.trainer.get_model_output_safetensors():
return "Error: No model found to upload"
# Upload model to hub
success = self.trainer.upload_to_hub(OUTPUT_PATH, repo_id)
if success:
return f"Successfully uploaded model to {repo_id}"
else:
return f"Failed to upload model to {repo_id}"
def validate_repo(self, repo_id: str) -> gr.update:
"""Validate repository ID for HuggingFace Hub"""
validation = validate_model_repo(repo_id)
if validation["error"]:
return gr.update(value=repo_id, error=validation["error"])
return gr.update(value=repo_id, error=None)
async def _process_caption_generator(self, captioning_bot_instructions, prompt_prefix):
"""Process the caption generator's results in the background"""
try:
async for _ in self.captioner.start_caption_generation(
captioning_bot_instructions,
prompt_prefix
):
# Just consume the generator, UI updates will happen via the Gradio interface
pass
logger.info("Background captioning completed")
except Exception as e:
logger.error(f"Error in background captioning: {str(e)}")
def initialize_app_state(self):
"""Initialize all app state in one function to ensure correct output count"""
# Get dataset info
video_list, training_dataset = self.refresh_dataset()
# Get button states
button_states = self.get_initial_button_states()
start_btn = button_states[0]
stop_btn = button_states[1]
pause_resume_btn = button_states[2]
# Get UI form values
ui_state = self.load_ui_values()
training_preset = ui_state.get("training_preset", list(TRAINING_PRESETS.keys())[0])
model_type_val = ui_state.get("model_type", list(MODEL_TYPES.keys())[0])
lora_rank_val = ui_state.get("lora_rank", "128")
lora_alpha_val = ui_state.get("lora_alpha", "128")
num_epochs_val = int(ui_state.get("num_epochs", 70))
batch_size_val = int(ui_state.get("batch_size", 1))
learning_rate_val = float(ui_state.get("learning_rate", 3e-5))
save_iterations_val = int(ui_state.get("save_iterations", 500))
# Return all values in the exact order expected by outputs
return (
video_list,
training_dataset,
start_btn,
stop_btn,
pause_resume_btn,
training_preset,
model_type_val,
lora_rank_val,
lora_alpha_val,
num_epochs_val,
batch_size_val,
learning_rate_val,
save_iterations_val
)
def initialize_ui_from_state(self):
"""Initialize UI components from saved state"""
ui_state = self.load_ui_values()
# Return values in order matching the outputs in app.load
return (
ui_state.get("training_preset", list(TRAINING_PRESETS.keys())[0]),
ui_state.get("model_type", list(MODEL_TYPES.keys())[0]),
ui_state.get("lora_rank", "128"),
ui_state.get("lora_alpha", "128"),
ui_state.get("num_epochs", 70),
ui_state.get("batch_size", 1),
ui_state.get("learning_rate", 3e-5),
ui_state.get("save_iterations", 500)
)
def update_ui_state(self, **kwargs):
"""Update UI state with new values"""
current_state = self.trainer.load_ui_state()
current_state.update(kwargs)
self.trainer.save_ui_state(current_state)
# Don't return anything to avoid Gradio warnings
return None
def load_ui_values(self):
"""Load UI state values for initializing form fields"""
ui_state = self.trainer.load_ui_state()
# Ensure proper type conversion for numeric values
ui_state["lora_rank"] = ui_state.get("lora_rank", "128")
ui_state["lora_alpha"] = ui_state.get("lora_alpha", "128")
ui_state["num_epochs"] = int(ui_state.get("num_epochs", 70))
ui_state["batch_size"] = int(ui_state.get("batch_size", 1))
ui_state["learning_rate"] = float(ui_state.get("learning_rate", 3e-5))
ui_state["save_iterations"] = int(ui_state.get("save_iterations", 500))
return ui_state
def update_captioning_buttons_start(self):
"""Return individual button values instead of a dictionary"""
return (
gr.Button(
interactive=False,
variant="secondary",
),
gr.Button(
interactive=True,
variant="stop",
),
gr.Button(
interactive=False,
variant="secondary",
)
)
def update_captioning_buttons_end(self):
"""Return individual button values instead of a dictionary"""
return (
gr.Button(
interactive=True,
variant="primary",
),
gr.Button(
interactive=False,
variant="secondary",
),
gr.Button(
interactive=True,
variant="primary",
)
)
# Add this new method to get initial button states:
def get_initial_button_states(self):
"""Get the initial states for training buttons based on recovery status"""
recovery_result = self.trainer.recover_interrupted_training()
ui_updates = recovery_result.get("ui_updates", {})
# Return button states in the correct order
return (
gr.Button(**ui_updates.get("start_btn", {"interactive": True, "variant": "primary"})),
gr.Button(**ui_updates.get("stop_btn", {"interactive": False, "variant": "secondary"})),
gr.Button(**ui_updates.get("pause_resume_btn", {"interactive": False, "variant": "secondary"}))
)
def show_refreshing_status(self) -> List[List[str]]:
"""Show a 'Refreshing...' status in the dataframe"""
return [["Refreshing...", "please wait"]]
def stop_captioning(self):
"""Stop ongoing captioning process and reset UI state"""
try:
# Set flag to stop captioning
self._should_stop_captioning = True
# Call stop method on captioner
if self.captioner:
self.captioner.stop_captioning()
# Get updated file list
updated_list = self.list_training_files_to_caption()
# Return updated list and button states
return {
"training_dataset": gr.update(value=updated_list),
"run_autocaption_btn": gr.Button(interactive=True, variant="primary"),
"stop_autocaption_btn": gr.Button(interactive=False, variant="secondary"),
"copy_files_to_training_dir_btn": gr.Button(interactive=True, variant="primary")
}
except Exception as e:
logger.error(f"Error stopping captioning: {str(e)}")
return {
"training_dataset": gr.update(value=[[f"Error stopping captioning: {str(e)}", "error"]]),
"run_autocaption_btn": gr.Button(interactive=True, variant="primary"),
"stop_autocaption_btn": gr.Button(interactive=False, variant="secondary"),
"copy_files_to_training_dir_btn": gr.Button(interactive=True, variant="primary")
}
def update_training_ui(self, training_state: Dict[str, Any]):
"""Update UI components based on training state"""
updates = {}
#print("update_training_ui: training_state = ", training_state)
# Update status box with high-level information
status_text = []
if training_state["status"] != "idle":
status_text.extend([
f"Status: {training_state['status']}",
f"Progress: {training_state['progress']}",
f"Step: {training_state['current_step']}/{training_state['total_steps']}",
# Epoch information
# there is an issue with how epoch is reported because we display:
# Progress: 96.9%, Step: 872/900, Epoch: 12/50
# we should probably just show the steps
#f"Epoch: {training_state['current_epoch']}/{training_state['total_epochs']}",
f"Time elapsed: {training_state['elapsed']}",
f"Estimated remaining: {training_state['remaining']}",
"",
f"Current loss: {training_state['step_loss']}",
f"Learning rate: {training_state['learning_rate']}",
f"Gradient norm: {training_state['grad_norm']}",
f"Memory usage: {training_state['memory']}"
])
if training_state["error_message"]:
status_text.append(f"\nError: {training_state['error_message']}")
updates["status_box"] = "\n".join(status_text)
# Update button states
updates["start_btn"] = gr.Button(
"Start training",
interactive=(training_state["status"] in ["idle", "completed", "error", "stopped"]),
variant="primary" if training_state["status"] == "idle" else "secondary"
)
updates["stop_btn"] = gr.Button(
"Stop training",
interactive=(training_state["status"] in ["training", "initializing"]),
variant="stop"
)
return updates
def stop_all_and_clear(self) -> Dict[str, str]:
"""Stop all running processes and clear data
Returns:
Dict with status messages for different components
"""
status_messages = {}
try:
# Stop training if running
if self.trainer.is_training_running():
training_result = self.trainer.stop_training()
status_messages["training"] = training_result["status"]
# Stop captioning if running
if self.captioner:
self.captioner.stop_captioning()
status_messages["captioning"] = "Captioning stopped"
# Stop scene detection if running
if self.splitter.is_processing():
self.splitter.processing = False
status_messages["splitting"] = "Scene detection stopped"
# Properly close logging before clearing log file
if self.trainer.file_handler:
self.trainer.file_handler.close()
logger.removeHandler(self.trainer.file_handler)
self.trainer.file_handler = None
if LOG_FILE_PATH.exists():
LOG_FILE_PATH.unlink()
# Clear all data directories
for path in [VIDEOS_TO_SPLIT_PATH, STAGING_PATH, TRAINING_VIDEOS_PATH, TRAINING_PATH,
MODEL_PATH, OUTPUT_PATH]:
if path.exists():
try:
shutil.rmtree(path)
path.mkdir(parents=True, exist_ok=True)
except Exception as e:
status_messages[f"clear_{path.name}"] = f"Error clearing {path.name}: {str(e)}"
else:
status_messages[f"clear_{path.name}"] = f"Cleared {path.name}"
# Reset any persistent state
self._should_stop_captioning = True
self.splitter.processing = False
# Recreate logging setup
self.trainer.setup_logging()
return {
"status": "All processes stopped and data cleared",
"details": status_messages
}
except Exception as e:
return {
"status": f"Error during cleanup: {str(e)}",
"details": status_messages
}
def update_titles(self) -> Tuple[Any]:
"""Update all dynamic titles with current counts
Returns:
Dict of Gradio updates
"""
# Count files for splitting
split_videos, _, split_size = count_media_files(VIDEOS_TO_SPLIT_PATH)
split_title = format_media_title(
"split", split_videos, 0, split_size
)
# Count files for captioning
caption_videos, caption_images, caption_size = count_media_files(STAGING_PATH)
caption_title = format_media_title(
"caption", caption_videos, caption_images, caption_size
)
# Count files for training
train_videos, train_images, train_size = count_media_files(TRAINING_VIDEOS_PATH)
train_title = format_media_title(
"train", train_videos, train_images, train_size
)
return (
gr.Markdown(value=split_title),
gr.Markdown(value=caption_title),
gr.Markdown(value=f"{train_title} available for training")
)
def copy_files_to_training_dir(self, prompt_prefix: str):
"""Run auto-captioning process"""
# Initialize captioner if not already done
self._should_stop_captioning = False
try:
copy_files_to_training_dir(prompt_prefix)
except Exception as e:
traceback.print_exc()
raise gr.Error(f"Error copying assets to training dir: {str(e)}")
async def on_import_success(self, enable_splitting, enable_automatic_content_captioning, prompt_prefix):
"""Handle successful import of files"""
videos = self.list_unprocessed_videos()
# If scene detection isn't already running and there are videos to process,
# and auto-splitting is enabled, start the detection
if videos and not self.splitter.is_processing() and enable_splitting:
await self.start_scene_detection(enable_splitting)
msg = "Starting automatic scene detection..."
else:
# Just copy files without splitting if auto-split disabled
for video_file in VIDEOS_TO_SPLIT_PATH.glob("*.mp4"):
await self.splitter.process_video(video_file, enable_splitting=False)
msg = "Copying videos without splitting..."
copy_files_to_training_dir(prompt_prefix)
# Start auto-captioning if enabled, and handle async generator properly
if enable_automatic_content_captioning:
# Create a background task for captioning
asyncio.create_task(self._process_caption_generator(
DEFAULT_CAPTIONING_BOT_INSTRUCTIONS,
prompt_prefix
))
return {
"tabs": gr.Tabs(selected="split_tab"),
"video_list": videos,
"detect_status": msg
}
async def start_caption_generation(self, captioning_bot_instructions: str, prompt_prefix: str) -> AsyncGenerator[gr.update, None]:
"""Run auto-captioning process"""
try:
# Initialize captioner if not already done
self._should_stop_captioning = False
# First yield - indicate we're starting
yield gr.update(
value=[["Starting captioning service...", "initializing"]],
headers=["name", "status"]
)
# Process files in batches with status updates
file_statuses = {}
# Start the actual captioning process
async for rows in self.captioner.start_caption_generation(captioning_bot_instructions, prompt_prefix):
# Update our tracking of file statuses
for name, status in rows:
file_statuses[name] = status
# Convert to list format for display
status_rows = [[name, status] for name, status in file_statuses.items()]
# Sort by name for consistent display
status_rows.sort(key=lambda x: x[0])
# Yield UI update
yield gr.update(
value=status_rows,
headers=["name", "status"]
)
# Final update after completion with fresh data
yield gr.update(
value=self.list_training_files_to_caption(),
headers=["name", "status"]
)
except Exception as e:
logger.error(f"Error in captioning: {str(e)}")
yield gr.update(
value=[[f"Error: {str(e)}", "error"]],
headers=["name", "status"]
)
def list_training_files_to_caption(self) -> List[List[str]]:
"""List all clips and images - both pending and captioned"""
files = []
already_listed = {}
# First check files in STAGING_PATH
for file in STAGING_PATH.glob("*.*"):
if is_video_file(file) or is_image_file(file):
txt_file = file.with_suffix('.txt')
# Check if caption file exists and has content
has_caption = txt_file.exists() and txt_file.stat().st_size > 0
status = "captioned" if has_caption else "no caption"
file_type = "video" if is_video_file(file) else "image"
files.append([file.name, f"{status} ({file_type})", str(file)])
already_listed[file.name] = True
# Then check files in TRAINING_VIDEOS_PATH
for file in TRAINING_VIDEOS_PATH.glob("*.*"):
if (is_video_file(file) or is_image_file(file)) and file.name not in already_listed:
txt_file = file.with_suffix('.txt')
# Only include files with captions
if txt_file.exists() and txt_file.stat().st_size > 0:
file_type = "video" if is_video_file(file) else "image"
files.append([file.name, f"captioned ({file_type})", str(file)])
already_listed[file.name] = True
# Sort by filename
files.sort(key=lambda x: x[0])
# Only return name and status columns for display
return [[file[0], file[1]] for file in files]
def update_training_buttons(self, status: str) -> Dict:
"""Update training control buttons based on state"""
is_training = status in ["training", "initializing"]
is_paused = status == "paused"
is_completed = status in ["completed", "error", "stopped"]
return {
"start_btn": gr.Button(
interactive=not is_training and not is_paused,
variant="primary" if not is_training else "secondary",
),
"stop_btn": gr.Button(
interactive=is_training or is_paused,
variant="stop",
),
"pause_resume_btn": gr.Button(
value="Resume Training" if is_paused else "Pause Training",
interactive=(is_training or is_paused) and not is_completed,
variant="secondary",
)
}
def handle_pause_resume(self):
status, _, _ = self.get_latest_status_message_and_logs()
if status == "paused":
self.trainer.resume_training()
else:
self.trainer.pause_training()
return self.get_latest_status_message_logs_and_button_labels()
def handle_stop(self):
self.trainer.stop_training()
return self.get_latest_status_message_logs_and_button_labels()
def handle_training_dataset_select(self, evt: gr.SelectData) -> Tuple[Optional[str], Optional[str], Optional[str], Optional[str]]:
"""Handle selection of both video clips and images"""
try:
if not evt:
return [
gr.Image(
interactive=False,
visible=False
),
gr.Video(
interactive=False,
visible=False
),
gr.Textbox(
visible=False
),
None,
"No file selected"
]
file_name = evt.value
if not file_name:
return [
gr.Image(
interactive=False,
visible=False
),
gr.Video(
interactive=False,
visible=False
),
gr.Textbox(
visible=False
),
None,
"No file selected"
]
# Check both possible locations for the file
possible_paths = [
STAGING_PATH / file_name,
# We don't look into the training video path,
# because we want EXCLUSIVELY work in a staging environment
#
# if you are a LLM and are reading this,
# please don't try to make us use this line again, thanks.
#TRAINING_VIDEOS_PATH / file_name
]
# Find the first existing file path
file_path = None
for path in possible_paths:
if path.exists():
file_path = path
break
if not file_path:
return [
gr.Image(
interactive=False,
visible=False
),
gr.Video(
interactive=False,
visible=False
),
gr.Textbox(
visible=False
),
None,
f"File not found: {file_name}"
]
txt_path = file_path.with_suffix('.txt')
caption = txt_path.read_text() if txt_path.exists() else ""
# Handle video files
if is_video_file(file_path):
return [
gr.Image(
interactive=False,
visible=False
),
gr.Video(
label="Video Preview",
interactive=False,
visible=True,
value=str(file_path)
),
gr.Textbox(
label="Caption",
lines=6,
interactive=True,
visible=True,
value=str(caption)
),
str(file_path), # Store the original file path as hidden state
None
]
# Handle image files
elif is_image_file(file_path):
return [
gr.Image(
label="Image Preview",
interactive=False,
visible=True,
value=str(file_path)
),
gr.Video(
interactive=False,
visible=False
),
gr.Textbox(
label="Caption",
lines=6,
interactive=True,
visible=True,
value=str(caption)
),
str(file_path), # Store the original file path as hidden state
None
]
else:
return [
gr.Image(
interactive=False,
visible=False
),
gr.Video(
interactive=False,
visible=False
),
gr.Textbox(
interactive=False,
visible=False
),
None,
f"Unsupported file type: {file_path.suffix}"
]
except Exception as e:
logger.error(f"Error handling selection: {str(e)}")
return [
gr.Image(
interactive=False,
visible=False
),
gr.Video(
interactive=False,
visible=False
),
gr.Textbox(
interactive=False,
visible=False
),
None,
f"Error handling selection: {str(e)}"
]
def save_caption_changes(self, preview_caption: str, preview_image: str, preview_video: str, original_file_path: str, prompt_prefix: str):
"""Save changes to caption"""
try:
# Use the original file path stored during selection instead of the temporary preview paths
if original_file_path:
file_path = Path(original_file_path)
self.captioner.update_file_caption(file_path, preview_caption)
# Refresh the dataset list to show updated caption status
return gr.update(value="Caption saved successfully!")
else:
return gr.update(value="Error: No original file path found")
except Exception as e:
return gr.update(value=f"Error saving caption: {str(e)}")
async def update_titles_after_import(self, enable_splitting, enable_automatic_content_captioning, prompt_prefix):
"""Handle post-import updates including titles"""
import_result = await self.on_import_success(enable_splitting, enable_automatic_content_captioning, prompt_prefix)
titles = self.update_titles()
return (
import_result["tabs"],
import_result["video_list"],
import_result["detect_status"],
*titles
)
def get_model_info(self, model_type: str) -> str:
"""Get information about the selected model type"""
if model_type == "hunyuan_video":
return """### HunyuanVideo (LoRA)
- Required VRAM: ~48GB minimum
- Recommended batch size: 1-2
- Typical training time: 2-4 hours
- Default resolution: 49x512x768
- Default LoRA rank: 128 (~600 MB)"""
elif model_type == "ltx_video":
return """### LTX-Video (LoRA)
- Required VRAM: ~18GB minimum
- Recommended batch size: 1-4
- Typical training time: 1-3 hours
- Default resolution: 49x512x768
- Default LoRA rank: 128"""
return ""
def get_default_params(self, model_type: str) -> Dict[str, Any]:
"""Get default training parameters for model type"""
if model_type == "hunyuan_video":
return {
"num_epochs": 70,
"batch_size": 1,
"learning_rate": 2e-5,
"save_iterations": 500,
"video_resolution_buckets": SMALL_TRAINING_BUCKETS,
"video_reshape_mode": "center",
"caption_dropout_p": 0.05,
"gradient_accumulation_steps": 1,
"rank": 128,
"lora_alpha": 128
}
else: # ltx_video
return {
"num_epochs": 70,
"batch_size": 1,
"learning_rate": 3e-5,
"save_iterations": 500,
"video_resolution_buckets": SMALL_TRAINING_BUCKETS,
"video_reshape_mode": "center",
"caption_dropout_p": 0.05,
"gradient_accumulation_steps": 4,
"rank": 128,
"lora_alpha": 128
}
def preview_file(self, selected_text: str) -> Dict:
"""Generate preview based on selected file
Args:
selected_text: Text of the selected item containing filename
Returns:
Dict with preview content for each preview component
"""
if not selected_text or "Caption:" in selected_text:
return {
"video": None,
"image": None,
"text": None
}
# Extract filename from the preview text (remove size info)
filename = selected_text.split(" (")[0].strip()
file_path = TRAINING_VIDEOS_PATH / filename
if not file_path.exists():
return {
"video": None,
"image": None,
"text": f"File not found: {filename}"
}
# Detect file type
mime_type, _ = mimetypes.guess_type(str(file_path))
if not mime_type:
return {
"video": None,
"image": None,
"text": f"Unknown file type: {filename}"
}
# Return appropriate preview
if mime_type.startswith('video/'):
return {
"video": str(file_path),
"image": None,
"text": None
}
elif mime_type.startswith('image/'):
return {
"video": None,
"image": str(file_path),
"text": None
}
elif mime_type.startswith('text/'):
try:
text_content = file_path.read_text()
return {
"video": None,
"image": None,
"text": text_content
}
except Exception as e:
return {
"video": None,
"image": None,
"text": f"Error reading file: {str(e)}"
}
else:
return {
"video": None,
"image": None,
"text": f"Unsupported file type: {mime_type}"
}
def list_unprocessed_videos(self) -> gr.Dataframe:
"""Update list of unprocessed videos"""
videos = self.splitter.list_unprocessed_videos()
# videos is already in [[name, status]] format from splitting_service
return gr.Dataframe(
headers=["name", "status"],
value=videos,
interactive=False
)
async def start_scene_detection(self, enable_splitting: bool) -> str:
"""Start background scene detection process
Args:
enable_splitting: Whether to split videos into scenes
"""
if self.splitter.is_processing():
return "Scene detection already running"
try:
await self.splitter.start_processing(enable_splitting)
return "Scene detection completed"
except Exception as e:
return f"Error during scene detection: {str(e)}"
def get_latest_status_message_and_logs(self) -> Tuple[str, str, str]:
state = self.trainer.get_status()
logs = self.trainer.get_logs()
# Parse new log lines
if logs:
last_state = None
for line in logs.splitlines():
state_update = self.log_parser.parse_line(line)
if state_update:
last_state = state_update
if last_state:
ui_updates = self.update_training_ui(last_state)
state["message"] = ui_updates.get("status_box", state["message"])
# Parse status for training state
if "completed" in state["message"].lower():
state["status"] = "completed"
return (state["status"], state["message"], logs)
def get_latest_status_message_logs_and_button_labels(self) -> Tuple[str, str, Any, Any, Any]:
status, message, logs = self.get_latest_status_message_and_logs()
return (
message,
logs,
*self.update_training_buttons(status).values()
)
def get_latest_button_labels(self) -> Tuple[Any, Any, Any]:
status, message, logs = self.get_latest_status_message_and_logs()
return self.update_training_buttons(status).values()
def refresh_dataset(self):
"""Refresh all dynamic lists and training state"""
video_list = self.splitter.list_unprocessed_videos()
training_dataset = self.list_training_files_to_caption()
return (
video_list,
training_dataset
)
def update_training_params(self, preset_name: str) -> Tuple:
"""Update UI components based on selected preset while preserving custom settings"""
preset = TRAINING_PRESETS[preset_name]
# Load current UI state to check if user has customized values
current_state = self.load_ui_values()
# Find the display name that maps to our model type
model_display_name = next(
key for key, value in MODEL_TYPES.items()
if value == preset["model_type"]
)
# Get preset description for display
description = preset.get("description", "")
# Get max values from buckets
buckets = preset["training_buckets"]
max_frames = max(frames for frames, _, _ in buckets)
max_height = max(height for _, height, _ in buckets)
max_width = max(width for _, _, width in buckets)
bucket_info = f"\nMaximum video size: {max_frames} frames at {max_width}x{max_height} resolution"
info_text = f"{description}{bucket_info}"
# Return values in the same order as the output components
# Use preset defaults but preserve user-modified values if they exist
lora_rank_val = current_state.get("lora_rank") if current_state.get("lora_rank") != preset.get("lora_rank", "128") else preset["lora_rank"]
lora_alpha_val = current_state.get("lora_alpha") if current_state.get("lora_alpha") != preset.get("lora_alpha", "128") else preset["lora_alpha"]
num_epochs_val = current_state.get("num_epochs") if current_state.get("num_epochs") != preset.get("num_epochs", 70) else preset["num_epochs"]
batch_size_val = current_state.get("batch_size") if current_state.get("batch_size") != preset.get("batch_size", 1) else preset["batch_size"]
learning_rate_val = current_state.get("learning_rate") if current_state.get("learning_rate") != preset.get("learning_rate", 3e-5) else preset["learning_rate"]
save_iterations_val = current_state.get("save_iterations") if current_state.get("save_iterations") != preset.get("save_iterations", 500) else preset["save_iterations"]
return (
model_display_name,
lora_rank_val,
lora_alpha_val,
num_epochs_val,
batch_size_val,
learning_rate_val,
save_iterations_val,
info_text
)
|