File size: 3,063 Bytes
72e6d3f
 
 
 
 
 
7f2a9f4
 
72e6d3f
7f2a9f4
 
 
 
 
 
453fb62
72e6d3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f2a9f4
72e6d3f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import requests
from bs4 import BeautifulSoup
from fastapi import FastAPI
from pydantic import BaseModel
import re
import os
import transformers 
import torch


model_id = "meta-llama/Meta-Llama-3-8B"

pipeline = transformers.pipeline(
    "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto"
)


app = FastAPI()


print("hello world")

@app.get("/")
async def root():
    return {"status": "OK"}

class Item(BaseModel):
    url: str
    percentage: int
    


def extract_article_content(url):
    try:
        # Fetch the HTML content of the article URL
        response = requests.get(url)

        soup = BeautifulSoup(response.text, 'html.parser')
        results = soup.find_all(['h1', 'p'])
        text = [result.text for result in results]
        ARTICLE = ' '.join(text)
        
        return ARTICLE
    except Exception as e:
        return f"Error: {e}"


@app.post("/summarize-v1")
async def root(item: Item):
    
    try:

        article = extract_article_content(item.url)

        url = "https://text-analysis12.p.rapidapi.com/summarize-text/api/v1.1"

        payload = {
            "language": "english",
            "summary_percent": item.percentage,
            'text': article
                   }
        headers = {
            "content-type": "application/json",
            "X-RapidAPI-Key":"",
            "X-RapidAPI-Host": "text-analysis12.p.rapidapi.com"
        }

        response = requests.post(url, json=payload, headers=headers).json()


        #text processing
        text = response["summary"].replace('\"', " ");
        text = re.sub(r'\s+', ' ', text)
        

        #return {clean_response}
        return {
                "summary":text}
        
    except requests.RequestException as e:
        return {"error": str(e), "status_code": 500}
    
@app.post("/summarize-v2")
async def root(item: Item):
    
    try:

        article = extract_article_content(item.url)

        response = requests.post('https://fumes-api.onrender.com/llama3',
        json={'prompt': "{ 'User': 'Summarize the following news article: '" + article + "}",
        "temperature":0.6,
        "topP":0.9,
        "maxTokens": 200}, stream=True)

        response_content = response.content.decode('utf-8')

        response_content = response_content.replace("Here is a summary of the news article:", "")
        response_content = response_content.replace("YOU CAN BUY ME COFFE! https://buymeacoffee.com/mygx", "")

        #return {clean_response}
        return {
                "summary":response_content}
        
    except requests.RequestException as e:
        return {"error": str(e), "status_code": 500}
    

@app.post("/summarize-v3")
async def root(item: Item):
    
    try:

        article = extract_article_content(item.url)

        output = pipeline("Summarize the following news article for me:", article)
    
        return {"summary": output}
        
    except requests.RequestException as e:
        return {"error": str(e), "status_code": 500}