import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.utils import weight_norm, remove_weight_norm from torch.nn import Conv1d, ConvTranspose1d LRELU_SLOPE = 0.1 alpha = 1.0 def get_padding(kernel_size, dilation=1): return int((kernel_size*dilation - dilation)/2) def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) class ResBlock1(torch.nn.Module): def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)): super(ResBlock1, self).__init__() self.h = h self.convs1 = nn.ModuleList([ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], padding=get_padding(kernel_size, dilation[2]))) ]) self.convs1.apply(init_weights) self.convs2 = nn.ModuleList([ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))) ]) self.convs2.apply(init_weights) self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers self.activations = nn.ModuleList([nn.LeakyReLU(LRELU_SLOPE) for _ in range(self.num_layers)]) def forward(self, x): acts1, acts2 = self.activations[::2], self.activations[1::2] for c1, c2,a1,a2 in zip(self.convs1, self.convs2,acts1,acts2): xt = a1(x) xt = c1(xt) xt = a2(xt) xt = c2(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs1: remove_weight_norm(l) for l in self.convs2: remove_weight_norm(l) class Encoder(torch.nn.Module): def __init__(self, h): super(Encoder, self).__init__() self.n_filters = h.en_filters self.vq_dim = h.vq_dim self.num_kernels = len(h.resblock_kernel_sizes) self.num_upsamples = len(h.upsample_rates) self.upsample_initial_channel = self.n_filters * ( 2**self.num_upsamples ) self.conv_pre = weight_norm(Conv1d(h.channel, self.n_filters, 7, 1, padding=3)) self.normalize = nn.ModuleList() resblock = ResBlock1 self.ups = nn.ModuleList() for i, (u, k) in enumerate(list(reversed(list(zip(h.upsample_rates, h.upsample_kernel_sizes))))): self.ups.append(weight_norm( Conv1d(self.n_filters*(2**i), self.n_filters*(2**(i+1)), k, u, padding=((k-u)//2) ))) self.resblocks = nn.ModuleList() ch = 1 for i in range(len(self.ups)): ch = self.n_filters*(2**(i+1)) for j, (k, d) in enumerate( zip( list(reversed(h.resblock_kernel_sizes)), list(reversed(h.resblock_dilation_sizes)) ) ): self.resblocks.append(resblock(h, ch, k, d)) self.normalize.append(torch.nn.LayerNorm([ch],eps=1e-6,elementwise_affine=True)) self.activation_post = nn.LeakyReLU(LRELU_SLOPE) self.conv_post = Conv1d(ch, self.vq_dim, 3, 1, padding=1) self.ups.apply(init_weights) self.conv_post.apply(init_weights) def forward(self, x): x = self.conv_pre(x) for i in range(self.num_upsamples): x = self.ups[i](x) xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i*self.num_kernels+j](x) xs = self.normalize[i*self.num_kernels+j](xs.transpose(1,2)).transpose(1,2) else: xs += self.resblocks[i*self.num_kernels+j](x) xs = self.normalize[i*self.num_kernels+j](xs.transpose(1,2)).transpose(1,2) x = xs / self.num_kernels x = self.activation_post(x) x = self.conv_post(x) return x def remove_weight_norm(self): print('Removing weight norm...') for l in self.ups: remove_weight_norm(l) for l in self.resblocks: l.remove_weight_norm() remove_weight_norm(self.conv_pre) class Quantizer_module(torch.nn.Module): def __init__(self, n_e, e_dim): super(Quantizer_module, self).__init__() self.embedding = nn.Embedding(n_e, e_dim) self.embedding.weight.data.uniform_(-1.0 / n_e, 1.0 / n_e) self.target = torch.arange(0,n_e) def forward(self, x, idx=0): loss=torch.Tensor([0.0]) d = torch.sum(x ** 2, 1, keepdim=True) + torch.sum(self.embedding.weight ** 2, 1) \ - 2 * torch.matmul(x, self.embedding.weight.T) min_indicies = torch.argmin(d, 1) z_q = self.embedding(min_indicies) embed_vec = self.embedding.weight embed_dis = torch.mm(embed_vec , embed_vec.T)*3 self.target = torch.arange(0,embed_vec.shape[0]).to(x.device) loss = F.cross_entropy(embed_dis,self.target)*(idx==0) return z_q, min_indicies,loss class Quantizer(torch.nn.Module): def __init__(self, h): super(Quantizer, self).__init__() assert h.vq_dim % h.n_code_groups == 0 self.lm_offset = 0 self.lm_states = None self.vq_dim = h.vq_dim self.residul_layer = h.n_q self.n_code_groups = h.n_code_groups self.quantizer_modules = nn.ModuleList() for i in range(self.residul_layer): self.quantizer_modules.append(nn.ModuleList([ Quantizer_module(h.n_codes, self.vq_dim // h.n_code_groups) for _ in range(h.n_code_groups) ])) self.h = h self.codebook_loss_lambda = self.h.codebook_loss_lambda # e.g., 1 self.commitment_loss_lambda = self.h.commitment_loss_lambda # e.g., 0.25 def for_one_step(self, xin, idx): xin = xin.transpose(1, 2) x = xin.reshape(-1, self.vq_dim) x = torch.split(x, self.vq_dim // self.h.n_code_groups, dim=-1) min_indicies = [] z_q = [] all_losses = [] for _x, m in zip(x, self.quantizer_modules[idx]): _z_q, _min_indicies,_loss = m(_x,idx) all_losses.append(_loss) z_q.append(_z_q) min_indicies.append(_min_indicies) z_q = torch.cat(z_q, -1).reshape(xin.shape) z_q = z_q.transpose(1, 2) all_losses = torch.stack(all_losses) loss = torch.mean(all_losses) return z_q, min_indicies, loss def forward(self, xin,bw=-1,mask_id=None): quantized_out = 0.0 residual = xin all_losses = [] all_indices = [] if bw<=0: bw = self.residul_layer for i in range(bw): quantized, indices, e_loss = self.for_one_step(residual, i) # if mask_id is not None: mask = ( torch.full([xin.shape[0],xin.shape[2],1], fill_value=i, device=xin.device) < mask_id.unsqueeze(2) + 1 ) mask = mask.repeat(1,1,xin.shape[1]).transpose(1,2) if mask_id is not None: loss = 0.1 * e_loss + self.codebook_loss_lambda * torch.mean((quantized - residual.detach()) ** 2 * mask) \ + self.commitment_loss_lambda * torch.mean((quantized.detach() - residual) ** 2 * mask ) else: loss = 0.1 * e_loss \ + self.codebook_loss_lambda * torch.mean((quantized - residual.detach()) ** 2 ) \ + self.commitment_loss_lambda * torch.mean((quantized.detach() - residual) ** 2 ) quantized = residual + (quantized - residual).detach() residual = residual - quantized if mask_id is not None: quantized_out = quantized_out + quantized * mask else: quantized_out = quantized_out + quantized all_indices.extend(indices) # all_losses.append(loss) all_losses = torch.stack(all_losses) loss = torch.mean(all_losses) return quantized_out, loss, all_indices def embed(self, x , bw=-1): quantized_out = torch.tensor(0.0, device=x.device) x = torch.split(x, 1, 2) if bw <= 0 or bw > self.residul_layer: bw = self.residul_layer for i in range(bw): ret = [] for j in range(self.n_code_groups): q = x[j+self.n_code_groups*i] embed = self.quantizer_modules[i][j] q = embed.embedding(q.squeeze(-1)) ret.append(q) ret = torch.cat(ret, -1) quantized_out = quantized_out + ret return quantized_out.transpose(1, 2) class Generator(torch.nn.Module): def __init__(self, h): super(Generator, self).__init__() self.h = h self.n_filters = h.de_filters self.vq_dim = h.vq_dim self.num_kernels = len(h.resblock_kernel_sizes) self.num_upsamples = len(h.upsample_rates) self.upsample_initial_channel = self.n_filters * ( 2**self.num_upsamples ) self.conv_pre = weight_norm(Conv1d(self.vq_dim, self.upsample_initial_channel, 7, 1, padding=3)) resblock = ResBlock1 self.norm = nn.Identity() self.ups = nn.ModuleList() for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): self.ups.append(weight_norm( ConvTranspose1d( self.upsample_initial_channel//(2**i), self.upsample_initial_channel//(2**(i+1)), k, u, padding=(k - u )//2, ) )) ch = 1 self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = self.upsample_initial_channel//(2**(i+1)) for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)): self.resblocks.append(resblock(h, ch, k, d)) self.activation_post = nn.LeakyReLU(LRELU_SLOPE) self.conv_post = weight_norm(Conv1d(ch, h.channel, 7, 1, padding=3)) self.ups.apply(init_weights) self.conv_post.apply(init_weights) def forward(self, x): x = self.norm(x) x = self.conv_pre(x) for i in range(self.num_upsamples): x = self.ups[i](x) xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i*self.num_kernels+j](x) else: xs += self.resblocks[i*self.num_kernels+j](x) x = xs / self.num_kernels x = self.activation_post(x) x = self.conv_post(x) x = torch.tanh(x) return x def remove_weight_norm(self): print('Removing weight norm...') for l in self.ups: remove_weight_norm(l) for l in self.resblocks: l.remove_weight_norm() remove_weight_norm(self.conv_pre) remove_weight_norm(self.conv_post)