|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.nn.utils import weight_norm, remove_weight_norm |
|
from torch.nn import Conv1d, ConvTranspose1d |
|
|
|
LRELU_SLOPE = 0.1 |
|
alpha = 1.0 |
|
|
|
def get_padding(kernel_size, dilation=1): |
|
return int((kernel_size*dilation - dilation)/2) |
|
|
|
def init_weights(m, mean=0.0, std=0.01): |
|
classname = m.__class__.__name__ |
|
if classname.find("Conv") != -1: |
|
m.weight.data.normal_(mean, std) |
|
|
|
class ResBlock1(torch.nn.Module): |
|
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)): |
|
super(ResBlock1, self).__init__() |
|
self.h = h |
|
self.convs1 = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], |
|
padding=get_padding(kernel_size, dilation[2]))) |
|
]) |
|
self.convs1.apply(init_weights) |
|
|
|
self.convs2 = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))) |
|
]) |
|
self.convs2.apply(init_weights) |
|
self.num_layers = len(self.convs1) + len(self.convs2) |
|
self.activations = nn.ModuleList([nn.LeakyReLU(LRELU_SLOPE) for _ in range(self.num_layers)]) |
|
|
|
|
|
def forward(self, x): |
|
acts1, acts2 = self.activations[::2], self.activations[1::2] |
|
for c1, c2,a1,a2 in zip(self.convs1, self.convs2,acts1,acts2): |
|
xt = a1(x) |
|
xt = c1(xt) |
|
xt = a2(xt) |
|
xt = c2(xt) |
|
x = xt + x |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs1: |
|
remove_weight_norm(l) |
|
for l in self.convs2: |
|
remove_weight_norm(l) |
|
|
|
|
|
class Encoder(torch.nn.Module): |
|
def __init__(self, h): |
|
super(Encoder, self).__init__() |
|
self.n_filters = h.en_filters |
|
self.vq_dim = h.vq_dim |
|
self.num_kernels = len(h.resblock_kernel_sizes) |
|
self.num_upsamples = len(h.upsample_rates) |
|
self.upsample_initial_channel = self.n_filters * ( 2**self.num_upsamples ) |
|
self.conv_pre = weight_norm(Conv1d(h.channel, self.n_filters, 7, 1, padding=3)) |
|
self.normalize = nn.ModuleList() |
|
resblock = ResBlock1 |
|
|
|
self.ups = nn.ModuleList() |
|
for i, (u, k) in enumerate(list(reversed(list(zip(h.upsample_rates, h.upsample_kernel_sizes))))): |
|
self.ups.append(weight_norm( |
|
Conv1d(self.n_filters*(2**i), self.n_filters*(2**(i+1)), |
|
k, u, |
|
padding=((k-u)//2) |
|
))) |
|
self.resblocks = nn.ModuleList() |
|
ch = 1 |
|
for i in range(len(self.ups)): |
|
ch = self.n_filters*(2**(i+1)) |
|
for j, (k, d) in enumerate( |
|
zip( |
|
list(reversed(h.resblock_kernel_sizes)), |
|
list(reversed(h.resblock_dilation_sizes)) |
|
) |
|
): |
|
self.resblocks.append(resblock(h, ch, k, d)) |
|
self.normalize.append(torch.nn.LayerNorm([ch],eps=1e-6,elementwise_affine=True)) |
|
|
|
self.activation_post = nn.LeakyReLU(LRELU_SLOPE) |
|
self.conv_post = Conv1d(ch, self.vq_dim, 3, 1, padding=1) |
|
self.ups.apply(init_weights) |
|
self.conv_post.apply(init_weights) |
|
|
|
def forward(self, x): |
|
x = self.conv_pre(x) |
|
for i in range(self.num_upsamples): |
|
x = self.ups[i](x) |
|
xs = None |
|
for j in range(self.num_kernels): |
|
if xs is None: |
|
xs = self.resblocks[i*self.num_kernels+j](x) |
|
xs = self.normalize[i*self.num_kernels+j](xs.transpose(1,2)).transpose(1,2) |
|
else: |
|
xs += self.resblocks[i*self.num_kernels+j](x) |
|
xs = self.normalize[i*self.num_kernels+j](xs.transpose(1,2)).transpose(1,2) |
|
x = xs / self.num_kernels |
|
x = self.activation_post(x) |
|
x = self.conv_post(x) |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
print('Removing weight norm...') |
|
for l in self.ups: |
|
remove_weight_norm(l) |
|
for l in self.resblocks: |
|
l.remove_weight_norm() |
|
remove_weight_norm(self.conv_pre) |
|
|
|
class Quantizer_module(torch.nn.Module): |
|
def __init__(self, n_e, e_dim): |
|
super(Quantizer_module, self).__init__() |
|
self.embedding = nn.Embedding(n_e, e_dim) |
|
self.embedding.weight.data.uniform_(-1.0 / n_e, 1.0 / n_e) |
|
self.target = torch.arange(0,n_e) |
|
|
|
def forward(self, x, idx=0): |
|
loss=torch.Tensor([0.0]) |
|
d = torch.sum(x ** 2, 1, keepdim=True) + torch.sum(self.embedding.weight ** 2, 1) \ |
|
- 2 * torch.matmul(x, self.embedding.weight.T) |
|
min_indicies = torch.argmin(d, 1) |
|
z_q = self.embedding(min_indicies) |
|
embed_vec = self.embedding.weight |
|
embed_dis = torch.mm(embed_vec , embed_vec.T)*3 |
|
self.target = torch.arange(0,embed_vec.shape[0]).to(x.device) |
|
loss = F.cross_entropy(embed_dis,self.target)*(idx==0) |
|
return z_q, min_indicies,loss |
|
|
|
class Quantizer(torch.nn.Module): |
|
def __init__(self, h): |
|
super(Quantizer, self).__init__() |
|
assert h.vq_dim % h.n_code_groups == 0 |
|
self.lm_offset = 0 |
|
self.lm_states = None |
|
self.vq_dim = h.vq_dim |
|
self.residul_layer = h.n_q |
|
self.n_code_groups = h.n_code_groups |
|
self.quantizer_modules = nn.ModuleList() |
|
for i in range(self.residul_layer): |
|
self.quantizer_modules.append(nn.ModuleList([ |
|
Quantizer_module(h.n_codes, self.vq_dim // h.n_code_groups) for _ in range(h.n_code_groups) |
|
])) |
|
self.h = h |
|
self.codebook_loss_lambda = self.h.codebook_loss_lambda |
|
self.commitment_loss_lambda = self.h.commitment_loss_lambda |
|
|
|
|
|
def for_one_step(self, xin, idx): |
|
xin = xin.transpose(1, 2) |
|
x = xin.reshape(-1, self.vq_dim) |
|
x = torch.split(x, self.vq_dim // self.h.n_code_groups, dim=-1) |
|
min_indicies = [] |
|
z_q = [] |
|
all_losses = [] |
|
for _x, m in zip(x, self.quantizer_modules[idx]): |
|
_z_q, _min_indicies,_loss = m(_x,idx) |
|
all_losses.append(_loss) |
|
z_q.append(_z_q) |
|
min_indicies.append(_min_indicies) |
|
z_q = torch.cat(z_q, -1).reshape(xin.shape) |
|
z_q = z_q.transpose(1, 2) |
|
all_losses = torch.stack(all_losses) |
|
loss = torch.mean(all_losses) |
|
return z_q, min_indicies, loss |
|
|
|
|
|
def forward(self, xin,bw=-1,mask_id=None): |
|
quantized_out = 0.0 |
|
residual = xin |
|
all_losses = [] |
|
all_indices = [] |
|
if bw<=0: |
|
bw = self.residul_layer |
|
for i in range(bw): |
|
quantized, indices, e_loss = self.for_one_step(residual, i) |
|
if mask_id is not None: |
|
mask = ( |
|
torch.full([xin.shape[0],xin.shape[2],1], fill_value=i, device=xin.device) < mask_id.unsqueeze(2) + 1 |
|
) |
|
mask = mask.repeat(1,1,xin.shape[1]).transpose(1,2) |
|
if mask_id is not None: |
|
loss = 0.1 * e_loss + self.codebook_loss_lambda * torch.mean((quantized - residual.detach()) ** 2 * mask) \ |
|
+ self.commitment_loss_lambda * torch.mean((quantized.detach() - residual) ** 2 * mask ) |
|
else: |
|
loss = 0.1 * e_loss \ |
|
+ self.codebook_loss_lambda * torch.mean((quantized - residual.detach()) ** 2 ) \ |
|
+ self.commitment_loss_lambda * torch.mean((quantized.detach() - residual) ** 2 ) |
|
|
|
quantized = residual + (quantized - residual).detach() |
|
residual = residual - quantized |
|
if mask_id is not None: |
|
quantized_out = quantized_out + quantized * mask |
|
else: |
|
quantized_out = quantized_out + quantized |
|
all_indices.extend(indices) |
|
all_losses.append(loss) |
|
all_losses = torch.stack(all_losses) |
|
loss = torch.mean(all_losses) |
|
return quantized_out, loss, all_indices |
|
|
|
def embed(self, x , bw=-1): |
|
quantized_out = torch.tensor(0.0, device=x.device) |
|
x = torch.split(x, 1, 2) |
|
if bw <= 0 or bw > self.residul_layer: |
|
bw = self.residul_layer |
|
for i in range(bw): |
|
ret = [] |
|
for j in range(self.n_code_groups): |
|
q = x[j+self.n_code_groups*i] |
|
embed = self.quantizer_modules[i][j] |
|
q = embed.embedding(q.squeeze(-1)) |
|
ret.append(q) |
|
ret = torch.cat(ret, -1) |
|
quantized_out = quantized_out + ret |
|
return quantized_out.transpose(1, 2) |
|
|
|
|
|
class Generator(torch.nn.Module): |
|
def __init__(self, h): |
|
super(Generator, self).__init__() |
|
self.h = h |
|
self.n_filters = h.de_filters |
|
self.vq_dim = h.vq_dim |
|
self.num_kernels = len(h.resblock_kernel_sizes) |
|
self.num_upsamples = len(h.upsample_rates) |
|
self.upsample_initial_channel = self.n_filters * ( 2**self.num_upsamples ) |
|
self.conv_pre = weight_norm(Conv1d(self.vq_dim, self.upsample_initial_channel, 7, 1, padding=3)) |
|
resblock = ResBlock1 |
|
|
|
|
|
self.norm = nn.Identity() |
|
|
|
self.ups = nn.ModuleList() |
|
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): |
|
self.ups.append(weight_norm( |
|
ConvTranspose1d( |
|
self.upsample_initial_channel//(2**i), self.upsample_initial_channel//(2**(i+1)), |
|
k, u, |
|
padding=(k - u )//2, |
|
) |
|
)) |
|
ch = 1 |
|
self.resblocks = nn.ModuleList() |
|
for i in range(len(self.ups)): |
|
ch = self.upsample_initial_channel//(2**(i+1)) |
|
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)): |
|
self.resblocks.append(resblock(h, ch, k, d)) |
|
|
|
|
|
self.activation_post = nn.LeakyReLU(LRELU_SLOPE) |
|
self.conv_post = weight_norm(Conv1d(ch, h.channel, 7, 1, padding=3)) |
|
self.ups.apply(init_weights) |
|
self.conv_post.apply(init_weights) |
|
|
|
def forward(self, x): |
|
x = self.norm(x) |
|
x = self.conv_pre(x) |
|
|
|
for i in range(self.num_upsamples): |
|
x = self.ups[i](x) |
|
xs = None |
|
for j in range(self.num_kernels): |
|
if xs is None: |
|
xs = self.resblocks[i*self.num_kernels+j](x) |
|
else: |
|
xs += self.resblocks[i*self.num_kernels+j](x) |
|
x = xs / self.num_kernels |
|
x = self.activation_post(x) |
|
x = self.conv_post(x) |
|
x = torch.tanh(x) |
|
|
|
return x |
|
|
|
def remove_weight_norm(self): |
|
print('Removing weight norm...') |
|
for l in self.ups: |
|
remove_weight_norm(l) |
|
for l in self.resblocks: |
|
l.remove_weight_norm() |
|
remove_weight_norm(self.conv_pre) |
|
remove_weight_norm(self.conv_post) |