yaoxunji's picture
Upload 6 files
a726cc5 verified
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils import weight_norm, remove_weight_norm
from torch.nn import Conv1d, ConvTranspose1d
LRELU_SLOPE = 0.1
alpha = 1.0
def get_padding(kernel_size, dilation=1):
return int((kernel_size*dilation - dilation)/2)
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
class ResBlock1(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
super(ResBlock1, self).__init__()
self.h = h
self.convs1 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2])))
])
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1)))
])
self.convs2.apply(init_weights)
self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers
self.activations = nn.ModuleList([nn.LeakyReLU(LRELU_SLOPE) for _ in range(self.num_layers)])
def forward(self, x):
acts1, acts2 = self.activations[::2], self.activations[1::2]
for c1, c2,a1,a2 in zip(self.convs1, self.convs2,acts1,acts2):
xt = a1(x)
xt = c1(xt)
xt = a2(xt)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class Encoder(torch.nn.Module):
def __init__(self, h):
super(Encoder, self).__init__()
self.n_filters = h.en_filters
self.vq_dim = h.vq_dim
self.num_kernels = len(h.resblock_kernel_sizes)
self.num_upsamples = len(h.upsample_rates)
self.upsample_initial_channel = self.n_filters * ( 2**self.num_upsamples )
self.conv_pre = weight_norm(Conv1d(h.channel, self.n_filters, 7, 1, padding=3))
self.normalize = nn.ModuleList()
resblock = ResBlock1
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(list(reversed(list(zip(h.upsample_rates, h.upsample_kernel_sizes))))):
self.ups.append(weight_norm(
Conv1d(self.n_filters*(2**i), self.n_filters*(2**(i+1)),
k, u,
padding=((k-u)//2)
)))
self.resblocks = nn.ModuleList()
ch = 1
for i in range(len(self.ups)):
ch = self.n_filters*(2**(i+1))
for j, (k, d) in enumerate(
zip(
list(reversed(h.resblock_kernel_sizes)),
list(reversed(h.resblock_dilation_sizes))
)
):
self.resblocks.append(resblock(h, ch, k, d))
self.normalize.append(torch.nn.LayerNorm([ch],eps=1e-6,elementwise_affine=True))
self.activation_post = nn.LeakyReLU(LRELU_SLOPE)
self.conv_post = Conv1d(ch, self.vq_dim, 3, 1, padding=1)
self.ups.apply(init_weights)
self.conv_post.apply(init_weights)
def forward(self, x):
x = self.conv_pre(x)
for i in range(self.num_upsamples):
x = self.ups[i](x)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i*self.num_kernels+j](x)
xs = self.normalize[i*self.num_kernels+j](xs.transpose(1,2)).transpose(1,2)
else:
xs += self.resblocks[i*self.num_kernels+j](x)
xs = self.normalize[i*self.num_kernels+j](xs.transpose(1,2)).transpose(1,2)
x = xs / self.num_kernels
x = self.activation_post(x)
x = self.conv_post(x)
return x
def remove_weight_norm(self):
print('Removing weight norm...')
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.conv_pre)
class Quantizer_module(torch.nn.Module):
def __init__(self, n_e, e_dim):
super(Quantizer_module, self).__init__()
self.embedding = nn.Embedding(n_e, e_dim)
self.embedding.weight.data.uniform_(-1.0 / n_e, 1.0 / n_e)
self.target = torch.arange(0,n_e)
def forward(self, x, idx=0):
loss=torch.Tensor([0.0])
d = torch.sum(x ** 2, 1, keepdim=True) + torch.sum(self.embedding.weight ** 2, 1) \
- 2 * torch.matmul(x, self.embedding.weight.T)
min_indicies = torch.argmin(d, 1)
z_q = self.embedding(min_indicies)
embed_vec = self.embedding.weight
embed_dis = torch.mm(embed_vec , embed_vec.T)*3
self.target = torch.arange(0,embed_vec.shape[0]).to(x.device)
loss = F.cross_entropy(embed_dis,self.target)*(idx==0)
return z_q, min_indicies,loss
class Quantizer(torch.nn.Module):
def __init__(self, h):
super(Quantizer, self).__init__()
assert h.vq_dim % h.n_code_groups == 0
self.lm_offset = 0
self.lm_states = None
self.vq_dim = h.vq_dim
self.residul_layer = h.n_q
self.n_code_groups = h.n_code_groups
self.quantizer_modules = nn.ModuleList()
for i in range(self.residul_layer):
self.quantizer_modules.append(nn.ModuleList([
Quantizer_module(h.n_codes, self.vq_dim // h.n_code_groups) for _ in range(h.n_code_groups)
]))
self.h = h
self.codebook_loss_lambda = self.h.codebook_loss_lambda # e.g., 1
self.commitment_loss_lambda = self.h.commitment_loss_lambda # e.g., 0.25
def for_one_step(self, xin, idx):
xin = xin.transpose(1, 2)
x = xin.reshape(-1, self.vq_dim)
x = torch.split(x, self.vq_dim // self.h.n_code_groups, dim=-1)
min_indicies = []
z_q = []
all_losses = []
for _x, m in zip(x, self.quantizer_modules[idx]):
_z_q, _min_indicies,_loss = m(_x,idx)
all_losses.append(_loss)
z_q.append(_z_q)
min_indicies.append(_min_indicies)
z_q = torch.cat(z_q, -1).reshape(xin.shape)
z_q = z_q.transpose(1, 2)
all_losses = torch.stack(all_losses)
loss = torch.mean(all_losses)
return z_q, min_indicies, loss
def forward(self, xin,bw=-1,mask_id=None):
quantized_out = 0.0
residual = xin
all_losses = []
all_indices = []
if bw<=0:
bw = self.residul_layer
for i in range(bw):
quantized, indices, e_loss = self.for_one_step(residual, i) #
if mask_id is not None:
mask = (
torch.full([xin.shape[0],xin.shape[2],1], fill_value=i, device=xin.device) < mask_id.unsqueeze(2) + 1
)
mask = mask.repeat(1,1,xin.shape[1]).transpose(1,2)
if mask_id is not None:
loss = 0.1 * e_loss + self.codebook_loss_lambda * torch.mean((quantized - residual.detach()) ** 2 * mask) \
+ self.commitment_loss_lambda * torch.mean((quantized.detach() - residual) ** 2 * mask )
else:
loss = 0.1 * e_loss \
+ self.codebook_loss_lambda * torch.mean((quantized - residual.detach()) ** 2 ) \
+ self.commitment_loss_lambda * torch.mean((quantized.detach() - residual) ** 2 )
quantized = residual + (quantized - residual).detach()
residual = residual - quantized
if mask_id is not None:
quantized_out = quantized_out + quantized * mask
else:
quantized_out = quantized_out + quantized
all_indices.extend(indices) #
all_losses.append(loss)
all_losses = torch.stack(all_losses)
loss = torch.mean(all_losses)
return quantized_out, loss, all_indices
def embed(self, x , bw=-1):
quantized_out = torch.tensor(0.0, device=x.device)
x = torch.split(x, 1, 2)
if bw <= 0 or bw > self.residul_layer:
bw = self.residul_layer
for i in range(bw):
ret = []
for j in range(self.n_code_groups):
q = x[j+self.n_code_groups*i]
embed = self.quantizer_modules[i][j]
q = embed.embedding(q.squeeze(-1))
ret.append(q)
ret = torch.cat(ret, -1)
quantized_out = quantized_out + ret
return quantized_out.transpose(1, 2)
class Generator(torch.nn.Module):
def __init__(self, h):
super(Generator, self).__init__()
self.h = h
self.n_filters = h.de_filters
self.vq_dim = h.vq_dim
self.num_kernels = len(h.resblock_kernel_sizes)
self.num_upsamples = len(h.upsample_rates)
self.upsample_initial_channel = self.n_filters * ( 2**self.num_upsamples )
self.conv_pre = weight_norm(Conv1d(self.vq_dim, self.upsample_initial_channel, 7, 1, padding=3))
resblock = ResBlock1
self.norm = nn.Identity()
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
self.ups.append(weight_norm(
ConvTranspose1d(
self.upsample_initial_channel//(2**i), self.upsample_initial_channel//(2**(i+1)),
k, u,
padding=(k - u )//2,
)
))
ch = 1
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = self.upsample_initial_channel//(2**(i+1))
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
self.resblocks.append(resblock(h, ch, k, d))
self.activation_post = nn.LeakyReLU(LRELU_SLOPE)
self.conv_post = weight_norm(Conv1d(ch, h.channel, 7, 1, padding=3))
self.ups.apply(init_weights)
self.conv_post.apply(init_weights)
def forward(self, x):
x = self.norm(x)
x = self.conv_pre(x)
for i in range(self.num_upsamples):
x = self.ups[i](x)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i*self.num_kernels+j](x)
else:
xs += self.resblocks[i*self.num_kernels+j](x)
x = xs / self.num_kernels
x = self.activation_post(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def remove_weight_norm(self):
print('Removing weight norm...')
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)