sone / app.py
yangtb24's picture
Update app.py
1d68708 verified
raw
history blame
45.4 kB
import os
import time
import logging
import requests
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
import json
import uuid
import concurrent.futures
import threading
import base64
import io
from io import BytesIO
from itertools import chain
from PIL import Image
from datetime import datetime
from apscheduler.schedulers.background import BackgroundScheduler
from flask import Flask, request, jsonify, Response, stream_with_context
from werkzeug.middleware.proxy_fix import ProxyFix
os.environ['TZ'] = 'Asia/Shanghai'
time.tzset()
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
API_ENDPOINT = "https://api-st.siliconflow.cn/v1/user/info"
TEST_MODEL_ENDPOINT = "https://api-st.siliconflow.cn/v1/chat/completions"
MODELS_ENDPOINT = "https://api-st.siliconflow.cn/v1/models"
EMBEDDINGS_ENDPOINT = "https://api-st.siliconflow.cn/v1/embeddings"
IMAGE_ENDPOINT = "https://api-st.siliconflow.cn/v1/images/generations"
def requests_session_with_retries(
retries=3, backoff_factor=0.3, status_forcelist=(500, 502, 504)
):
session = requests.Session()
retry = Retry(
total=retries,
read=retries,
connect=retries,
backoff_factor=backoff_factor,
status_forcelist=status_forcelist,
)
adapter = HTTPAdapter(
max_retries=retry,
pool_connections=1000,
pool_maxsize=10000,
pool_block=False
)
session.mount("http://", adapter)
session.mount("https://", adapter)
return session
session = requests_session_with_retries()
app = Flask(__name__)
app.wsgi_app = ProxyFix(app.wsgi_app, x_for=1)
models = {
"text": [],
"free_text": [],
"embedding": [],
"free_embedding": [],
"image": [],
"free_image": []
}
key_status = {
"invalid": [],
"free": [],
"unverified": [],
"valid": []
}
executor = concurrent.futures.ThreadPoolExecutor(max_workers=10000)
model_key_indices = {}
request_timestamps = []
token_counts = []
request_timestamps_day = []
token_counts_day = []
data_lock = threading.Lock()
def get_credit_summary(api_key):
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
max_retries = 3
for attempt in range(max_retries):
try:
response = session.get(API_ENDPOINT, headers=headers, timeout=2)
response.raise_for_status()
data = response.json().get("data", {})
total_balance = data.get("totalBalance", 0)
logging.info(f"获取额度,API Key:{api_key},当前额度: {total_balance}")
return {"total_balance": float(total_balance)}
except requests.exceptions.Timeout as e:
logging.error(f"获取额度信息失败,API Key:{api_key},尝试次数:{attempt+1}/{max_retries},错误信息:{e} (Timeout)")
if attempt >= max_retries - 1:
logging.error(f"获取额度信息失败,API Key:{api_key},所有重试次数均已失败 (Timeout)")
except requests.exceptions.RequestException as e:
logging.error(f"获取额度信息失败,API Key:{api_key},错误信息:{e}")
return None
FREE_MODEL_TEST_KEY = (
"sk-bmjbjzleaqfgtqfzmcnsbagxrlohriadnxqrzfocbizaxukw"
)
FREE_IMAGE_LIST = [
"stabilityai/stable-diffusion-3-5-large",
"black-forest-labs/FLUX.1-schnell",
"stabilityai/stable-diffusion-3-medium",
"stabilityai/stable-diffusion-xl-base-1.0",
"stabilityai/stable-diffusion-2-1"
]
def test_model_availability(api_key, model_name, model_type="chat"):
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
if model_type == "image":
return model_name in FREE_IMAGE_LIST
try:
endpoint = EMBEDDINGS_ENDPOINT if model_type == "embedding" else TEST_MODEL_ENDPOINT
payload = (
{"model": model_name, "input": ["hi"]}
if model_type == "embedding"
else {"model": model_name, "messages": [{"role": "user", "content": "hi"}], "max_tokens": 5, "stream": False}
)
timeout = 10 if model_type == "embedding" else 5
response = session.post(
endpoint,
headers=headers,
json=payload,
timeout=timeout
)
return response.status_code in [200, 429]
except requests.exceptions.RequestException as e:
logging.error(
f"测试{model_type}模型 {model_name} 可用性失败,"
f"API Key:{api_key},错误信息:{e}"
)
return False
def process_image_url(image_url, response_format=None):
if not image_url:
return {"url": ""}
if response_format == "b64_json":
try:
response = session.get(image_url, stream=True)
response.raise_for_status()
image = Image.open(response.raw)
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return {"b64_json": img_str}
except Exception as e:
logging.error(f"图片转base64失败: {e}")
return {"url": image_url}
return {"url": image_url}
def create_base64_markdown_image(image_url):
try:
response = session.get(image_url, stream=True)
response.raise_for_status()
image = Image.open(BytesIO(response.content))
new_size = tuple(dim // 4 for dim in image.size)
resized_image = image.resize(new_size, Image.LANCZOS)
buffered = BytesIO()
resized_image.save(buffered, format="PNG")
base64_encoded = base64.b64encode(buffered.getvalue()).decode('utf-8')
markdown_image_link = f"![](data:image/png;base64,{base64_encoded})"
logging.info("Created base64 markdown image link.")
return markdown_image_link
except Exception as e:
logging.error(f"Error creating markdown image: {e}")
return None
def extract_user_content(messages):
user_content = ""
for message in messages:
if message["role"] == "user":
if isinstance(message["content"], str):
user_content += message["content"] + " "
elif isinstance(message["content"], list):
for item in message["content"]:
if isinstance(item, dict) and item.get("type") == "text":
user_content += item.get("text", "") + " "
return user_content.strip()
def get_siliconflow_data(model_name, data):
siliconflow_data = {
"model": model_name,
"prompt": data.get("prompt") or "",
}
if model_name == "black-forest-labs/FLUX.1-pro":
siliconflow_data.update({
"width": max(256, min(1440, (data.get("width", 1024) // 32) * 32)),
"height": max(256, min(1440, (data.get("height", 768) // 32) * 32)),
"prompt_upsampling": data.get("prompt_upsampling", False),
"image_prompt": data.get("image_prompt"),
"steps": max(1, min(50, data.get("steps", 20))),
"guidance": max(1.5, min(5, data.get("guidance", 3))),
"safety_tolerance": max(0, min(6, data.get("safety_tolerance", 2))),
"interval": max(1, min(4, data.get("interval", 2))),
"output_format": data.get("output_format", "png")
})
seed = data.get("seed")
if isinstance(seed, int) and 0 < seed < 9999999999:
siliconflow_data["seed"] = seed
else:
siliconflow_data.update({
"image_size": data.get("image_size", "1024x1024"),
"prompt_enhancement": data.get("prompt_enhancement", False)
})
seed = data.get("seed")
if isinstance(seed, int) and 0 < seed < 9999999999:
siliconflow_data["seed"] = seed
if model_name not in ["black-forest-labs/FLUX.1-schnell", "Pro/black-forest-labs/FLUX.1-schnell"]:
siliconflow_data.update({
"batch_size": max(1, min(4, data.get("n", 1))),
"num_inference_steps": max(1, min(50, data.get("steps", 20))),
"guidance_scale": max(0, min(100, data.get("guidance_scale", 7.5))),
"negative_prompt": data.get("negative_prompt")
})
valid_sizes = ["1024x1024", "512x1024", "768x512", "768x1024", "1024x576", "576x1024", "960x1280", "720x1440", "720x1280"]
if "image_size" in siliconflow_data and siliconflow_data["image_size"] not in valid_sizes:
siliconflow_data["image_size"] = "1024x1024"
return siliconflow_data
def refresh_models():
global models
models["text"] = get_all_models(FREE_MODEL_TEST_KEY, "chat")
models["embedding"] = get_all_models(FREE_MODEL_TEST_KEY, "embedding")
models["image"] = get_all_models(FREE_MODEL_TEST_KEY, "text-to-image")
models["free_text"] = []
models["free_embedding"] = []
models["free_image"] = []
ban_models = []
ban_models_str = os.environ.get("BAN_MODELS")
if ban_models_str:
try:
ban_models = json.loads(ban_models_str)
if not isinstance(ban_models, list):
logging.warning("环境变量 BAN_MODELS 格式不正确,应为 JSON 数组。")
ban_models = []
except json.JSONDecodeError:
logging.warning("环境变量 BAN_MODELS JSON 解析失败,请检查格式。")
models["text"] = [model for model in models["text"] if model not in ban_models]
models["embedding"] = [model for model in models["embedding"] if model not in ban_models]
models["image"] = [model for model in models["image"] if model not in ban_models]
model_types = [
("text", "chat"),
("embedding", "embedding"),
("image", "image")
]
for model_type, test_type in model_types:
with concurrent.futures.ThreadPoolExecutor(max_workers=10000) as executor:
future_to_model = {
executor.submit(
test_model_availability,
FREE_MODEL_TEST_KEY,
model,
test_type
): model for model in models[model_type]
}
for future in concurrent.futures.as_completed(future_to_model):
model = future_to_model[future]
try:
is_free = future.result()
if is_free:
models[f"free_{model_type}"].append(model)
except Exception as exc:
logging.error(f"{model_type}模型 {model} 测试生成异常: {exc}")
for model_type in ["text", "embedding", "image"]:
logging.info(f"所有{model_type}模型列表:{models[model_type]}")
logging.info(f"免费{model_type}模型列表:{models[f'free_{model_type}']}")
def load_keys():
global key_status
for status in key_status:
key_status[status] = []
keys_str = os.environ.get("KEYS")
if not keys_str:
logging.warning("环境变量 KEYS 未设置。")
return
test_model = os.environ.get("TEST_MODEL", "Pro/google/gemma-2-9b-it")
unique_keys = list(set(key.strip() for key in keys_str.split(',')))
os.environ["KEYS"] = ','.join(unique_keys)
logging.info(f"加载的 keys:{unique_keys}")
def process_key_with_logging(key):
try:
key_type = process_key(key, test_model)
if key_type in key_status:
key_status[key_type].append(key)
return key_type
except Exception as exc:
logging.error(f"处理 KEY {key} 生成异常: {exc}")
return "invalid"
with concurrent.futures.ThreadPoolExecutor(max_workers=10000) as executor:
futures = [executor.submit(process_key_with_logging, key) for key in unique_keys]
concurrent.futures.wait(futures)
for status, keys in key_status.items():
logging.info(f"{status.capitalize()} KEYS: {keys}")
global invalid_keys_global, free_keys_global, unverified_keys_global, valid_keys_global
invalid_keys_global = key_status["invalid"]
free_keys_global = key_status["free"]
unverified_keys_global = key_status["unverified"]
valid_keys_global = key_status["valid"]
def process_key(key, test_model):
credit_summary = get_credit_summary(key)
if credit_summary is None:
return "invalid"
else:
total_balance = credit_summary.get("total_balance", 0)
if total_balance <= 0.03:
return "free"
else:
if test_model_availability(key, test_model):
return "valid"
else:
return "unverified"
def get_all_models(api_key, sub_type):
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
try:
response = session.get(
MODELS_ENDPOINT,
headers=headers,
params={"sub_type": sub_type}
)
response.raise_for_status()
data = response.json()
if (
isinstance(data, dict) and
'data' in data and
isinstance(data['data'], list)
):
return [
model.get("id") for model in data["data"]
if isinstance(model, dict) and "id" in model
]
else:
logging.error("获取模型列表失败:响应数据格式不正确")
return []
except requests.exceptions.RequestException as e:
logging.error(
f"获取模型列表失败,"
f"API Key:{api_key},错误信息:{e}"
)
return []
except (KeyError, TypeError) as e:
logging.error(
f"解析模型列表失败,"
f"API Key:{api_key},错误信息:{e}"
)
return []
def determine_request_type(model_name, model_list, free_model_list):
if model_name in free_model_list:
return "free"
elif model_name in model_list:
return "paid"
else:
return "unknown"
def select_key(request_type, model_name):
if request_type == "free":
available_keys = (
free_keys_global +
unverified_keys_global +
valid_keys_global
)
elif request_type == "paid":
available_keys = unverified_keys_global + valid_keys_global
else:
available_keys = (
free_keys_global +
unverified_keys_global +
valid_keys_global
)
if not available_keys:
return None
current_index = model_key_indices.get(model_name, 0)
for _ in range(len(available_keys)):
key = available_keys[current_index % len(available_keys)]
current_index += 1
if key_is_valid(key, request_type):
model_key_indices[model_name] = current_index
return key
else:
logging.warning(
f"KEY {key} 无效或达到限制,尝试下一个 KEY"
)
model_key_indices[model_name] = 0
return None
def key_is_valid(key, request_type):
if request_type == "invalid":
return False
credit_summary = get_credit_summary(key)
if credit_summary is None:
return False
total_balance = credit_summary.get("total_balance", 0)
if request_type == "free":
return True
elif request_type == "paid" or request_type == "unverified":
return total_balance > 0
else:
return False
def check_authorization(request):
authorization_key = os.environ.get("AUTHORIZATION_KEY")
if not authorization_key:
logging.warning("环境变量 AUTHORIZATION_KEY 未设置,此时无需鉴权即可使用,建议进行设置后再使用。")
return True
auth_header = request.headers.get('Authorization')
if not auth_header:
logging.warning("请求头中缺少 Authorization 字段。")
return False
if auth_header != f"Bearer {authorization_key}":
logging.warning(f"无效的 Authorization 密钥:{auth_header}")
return False
return True
scheduler = BackgroundScheduler()
scheduler.add_job(load_keys, 'interval', hours=1)
scheduler.remove_all_jobs()
scheduler.add_job(refresh_models, 'interval', hours=1)
@app.route('/')
def index():
current_time = time.time()
one_minute_ago = current_time - 60
one_day_ago = current_time - 86400
with data_lock:
while request_timestamps and request_timestamps[0] < one_minute_ago:
request_timestamps.pop(0)
token_counts.pop(0)
rpm = len(request_timestamps)
tpm = sum(token_counts)
with data_lock:
while request_timestamps_day and request_timestamps_day[0] < one_day_ago:
request_timestamps_day.pop(0)
token_counts_day.pop(0)
rpd = len(request_timestamps_day)
tpd = sum(token_counts_day)
return jsonify({"rpm": rpm, "tpm": tpm, "rpd": rpd, "tpd": tpd})
@app.route('/handsome/v1/models', methods=['GET'])
def list_models():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
detailed_models = []
all_models = chain(
models["text"],
models["embedding"],
models["image"]
)
for model in all_models:
detailed_models.append({
"id": model,
"object": "model",
"created": 1678888888,
"owned_by": "openai",
"permission": [],
"root": model,
"parent": None
})
return jsonify({
"success": True,
"data": detailed_models
})
@app.route('/handsome/v1/dashboard/billing/usage', methods=['GET'])
def billing_usage():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
daily_usage = []
return jsonify({
"object": "list",
"data": daily_usage,
"total_usage": 0
})
@app.route('/handsome/v1/dashboard/billing/subscription', methods=['GET'])
def billing_subscription():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
keys = valid_keys_global + unverified_keys_global
total_balance = 0
with concurrent.futures.ThreadPoolExecutor(
max_workers=10000
) as executor:
futures = [
executor.submit(get_credit_summary, key) for key in keys
]
for future in concurrent.futures.as_completed(futures):
try:
credit_summary = future.result()
if credit_summary:
total_balance += credit_summary.get("total_balance", 0)
except Exception as exc:
logging.error(f"获取额度信息生成异常: {exc}")
return jsonify({
"object": "billing_subscription",
"access_until": int(datetime(9999, 12, 31).timestamp()),
"soft_limit": 0,
"hard_limit": total_balance,
"system_hard_limit": total_balance,
"soft_limit_usd": 0,
"hard_limit_usd": total_balance,
"system_hard_limit_usd": total_balance
})
@app.route('/handsome/v1/embeddings', methods=['POST'])
def handsome_embeddings():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
data = request.get_json()
if not data or 'model' not in data:
return jsonify({"error": "Invalid request data"}), 400
if data['model'] not in models["embedding"]:
return jsonify({"error": "Invalid model"}), 400
model_name = data['model']
request_type = determine_request_type(
model_name,
models["embedding"],
models["free_embedding"]
)
api_key = select_key(request_type, model_name)
if not api_key:
return jsonify({"error": ("No available API key for this request type or all keys have reached their limits")}), 429
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
try:
start_time = time.time()
response = requests.post(
EMBEDDINGS_ENDPOINT,
headers=headers,
json=data,
timeout=120
)
if response.status_code == 429:
return jsonify(response.json()), 429
response.raise_for_status()
end_time = time.time()
response_json = response.json()
total_time = end_time - start_time
try:
prompt_tokens = response_json["usage"]["prompt_tokens"]
embedding_data = response_json["data"]
except (KeyError, ValueError, IndexError) as e:
logging.error(
f"解析响应 JSON 失败: {e}, "
f"完整内容: {response_json}"
)
prompt_tokens = 0
embedding_data = []
logging.info(
f"使用的key: {api_key}, "
f"提示token: {prompt_tokens}, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}"
)
with data_lock:
request_timestamps.append(time.time())
token_counts.append(prompt_tokens)
request_timestamps_day.append(time.time())
token_counts_day.append(prompt_tokens)
return jsonify({
"object": "list",
"data": embedding_data,
"model": model_name,
"usage": {
"prompt_tokens": prompt_tokens,
"total_tokens": prompt_tokens
}
})
except requests.exceptions.RequestException as e:
return jsonify({"error": str(e)}), 500
@app.route('/handsome/v1/images/generations', methods=['POST'])
def handsome_images_generations():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
data = request.get_json()
if not data or 'model' not in data:
return jsonify({"error": "Invalid request data"}), 400
if data['model'] not in models["image"]:
return jsonify({"error": "Invalid model"}), 400
model_name = data.get('model')
request_type = determine_request_type(
model_name,
models["image"],
models["free_image"]
)
api_key = select_key(request_type, model_name)
if not api_key:
return jsonify({"error": ("No available API key for this request type or all keys have reached their limits")}), 429
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
response_data = {}
if "stable-diffusion" in model_name or model_name in ["black-forest-labs/FLUX.1-schnell", "Pro/black-forest-labs/FLUX.1-schnell","black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-pro"]:
siliconflow_data = get_siliconflow_data(model_name, data)
try:
start_time = time.time()
response = requests.post(
IMAGE_ENDPOINT,
headers=headers,
json=siliconflow_data,
timeout=120
)
if response.status_code == 429:
return jsonify(response.json()), 429
response.raise_for_status()
end_time = time.time()
response_json = response.json()
total_time = end_time - start_time
try:
images = response_json.get("images", [])
openai_images = []
for item in images:
if isinstance(item, dict) and "url" in item:
image_url = item["url"]
print(f"image_url: {image_url}")
if data.get("response_format") == "b64_json":
try:
image_data = session.get(image_url, stream=True).raw
image = Image.open(image_data)
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
openai_images.append({"b64_json": img_str})
except Exception as e:
logging.error(f"图片转base64失败: {e}")
openai_images.append({"url": image_url})
else:
openai_images.append({"url": image_url})
else:
logging.error(f"无效的图片数据: {item}")
openai_images.append({"url": item})
response_data = {
"created": int(time.time()),
"data": openai_images
}
except (KeyError, ValueError, IndexError) as e:
logging.error(
f"解析响应 JSON 失败: {e}, "
f"完整内容: {response_json}"
)
response_data = {
"created": int(time.time()),
"data": []
}
logging.info(
f"使用的key: {api_key}, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}"
)
with data_lock:
request_timestamps.append(time.time())
token_counts.append(0)
request_timestamps_day.append(time.time())
token_counts_day.append(0)
return jsonify(response_data)
except requests.exceptions.RequestException as e:
logging.error(f"请求转发异常: {e}")
return jsonify({"error": str(e)}), 500
else:
return jsonify({"error": "Unsupported model"}), 400
@app.route('/handsome/v1/chat/completions', methods=['POST'])
def handsome_chat_completions():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
data = request.get_json()
if not data or 'model' not in data:
return jsonify({"error": "Invalid request data"}), 400
if data['model'] not in models["text"] and data['model'] not in models["image"]:
return jsonify({"error": "Invalid model"}), 400
model_name = data['model']
request_type = determine_request_type(
model_name,
models["text"] + models["image"],
models["free_text"] + models["free_image"]
)
api_key = select_key(request_type, model_name)
if not api_key:
return jsonify(
{
"error": (
"No available API key for this "
"request type or all keys have "
"reached their limits"
)
}
), 429
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
if model_name in models["image"]:
if isinstance(data.get("messages"), list):
data = data.copy()
data["prompt"] = extract_user_content(data["messages"])
siliconflow_data = get_siliconflow_data(model_name, data)
try:
start_time = time.time()
response = requests.post(
IMAGE_ENDPOINT,
headers=headers,
json=siliconflow_data,
stream=data.get("stream", False)
)
if response.status_code == 429:
return jsonify(response.json()), 429
if data.get("stream", False):
def generate():
try:
response.raise_for_status()
response_json = response.json()
images = response_json.get("images", [])
image_url = ""
if images and isinstance(images[0], dict) and "url" in images[0]:
image_url = images[0]["url"]
logging.info(f"Extracted image URL: {image_url}")
elif images and isinstance(images[0], str):
image_url = images[0]
logging.info(f"Extracted image URL: {image_url}")
markdown_image_link = create_base64_markdown_image(image_url)
if image_url:
chunk_size = 8192
for i in range(0, len(markdown_image_link), chunk_size):
chunk = markdown_image_link[i:i + chunk_size]
chunk_data = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model_name,
"choices": [
{
"index": 0,
"delta": {
"role": "assistant",
"content": chunk
},
"finish_reason": None
}
]
}
yield f"data: {json.dumps(chunk_data)}\n\n".encode('utf-8')
else:
chunk_data = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model_name,
"choices": [
{
"index": 0,
"delta": {
"role": "assistant",
"content": "Failed to generate image"
},
"finish_reason": None
}
]
}
yield f"data: {json.dumps(chunk_data)}\n\n".encode('utf-8')
end_chunk_data = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model_name,
"choices": [
{
"index": 0,
"delta": {},
"finish_reason": "stop"
}
]
}
yield f"data: {json.dumps(end_chunk_data)}\n\n".encode('utf-8')
with data_lock:
request_timestamps.append(time.time())
token_counts.append(0)
request_timestamps_day.append(time.time())
token_counts_day.append(0)
except requests.exceptions.RequestException as e:
logging.error(f"请求转发异常: {e}")
error_chunk_data = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model_name,
"choices": [
{
"index": 0,
"delta": {
"role": "assistant",
"content": f"Error: {str(e)}"
},
"finish_reason": None
}
]
}
yield f"data: {json.dumps(error_chunk_data)}\n\n".encode('utf-8')
end_chunk_data = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model_name,
"choices": [
{
"index": 0,
"delta": {},
"finish_reason": "stop"
}
]
}
yield f"data: {json.dumps(end_chunk_data)}\n\n".encode('utf-8')
logging.info(
f"使用的key: {api_key}, "
f"使用的模型: {model_name}"
)
yield "data: [DONE]\n\n".encode('utf-8')
return Response(stream_with_context(generate()), content_type='text/event-stream')
else:
response.raise_for_status()
end_time = time.time()
response_json = response.json()
total_time = end_time - start_time
try:
images = response_json.get("images", [])
image_url = ""
if images and isinstance(images[0], dict) and "url" in images[0]:
image_url = images[0]["url"]
logging.info(f"Extracted image URL: {image_url}")
elif images and isinstance(images[0], str):
image_url = images[0]
logging.info(f"Extracted image URL: {image_url}")
markdown_image_link = f"![image]({image_url})"
response_data = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion",
"created": int(time.time()),
"model": model_name,
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": markdown_image_link if image_url else "Failed to generate image",
},
"finish_reason": "stop",
}
],
}
except (KeyError, ValueError, IndexError) as e:
logging.error(
f"解析响应 JSON 失败: {e}, "
f"完整内容: {response_json}"
)
response_data = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion",
"created": int(time.time()),
"model": model_name,
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "Failed to process image data",
},
"finish_reason": "stop",
}
],
}
logging.info(
f"使用的key: {api_key}, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}"
)
with data_lock:
request_timestamps.append(time.time())
token_counts.append(0)
request_timestamps_day.append(time.time())
token_counts_day.append(0)
return jsonify(response_data)
except requests.exceptions.RequestException as e:
logging.error(f"请求转发异常: {e}")
return jsonify({"error": str(e)}), 500
else:
try:
start_time = time.time()
response = requests.post(
TEST_MODEL_ENDPOINT,
headers=headers,
json=data,
stream=data.get("stream", False)
)
if response.status_code == 429:
return jsonify(response.json()), 429
if data.get("stream", False):
def generate():
first_chunk_time = None
full_response_content = ""
for chunk in response.iter_content(chunk_size=2048):
if chunk:
if first_chunk_time is None:
first_chunk_time = time.time()
full_response_content += chunk.decode("utf-8")
yield chunk
end_time = time.time()
first_token_time = (
first_chunk_time - start_time
if first_chunk_time else 0
)
total_time = end_time - start_time
prompt_tokens = 0
completion_tokens = 0
response_content = ""
for line in full_response_content.splitlines():
if line.startswith("data:"):
line = line[5:].strip()
if line == "[DONE]":
continue
try:
response_json = json.loads(line)
if (
"usage" in response_json and
"completion_tokens" in response_json["usage"]
):
completion_tokens = response_json[
"usage"
]["completion_tokens"]
if (
"choices" in response_json and
len(response_json["choices"]) > 0 and
"delta" in response_json["choices"][0] and
"content" in response_json[
"choices"
][0]["delta"]
):
response_content += response_json[
"choices"
][0]["delta"]["content"]
if (
"usage" in response_json and
"prompt_tokens" in response_json["usage"]
):
prompt_tokens = response_json[
"usage"
]["prompt_tokens"]
except (
KeyError,
ValueError,
IndexError
) as e:
logging.error(
f"解析流式响应单行 JSON 失败: {e}, "
f"行内容: {line}"
)
user_content = extract_user_content(data.get("messages", []))
user_content_replaced = user_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
response_content_replaced = response_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
logging.info(
f"使用的key: {api_key}, "
f"提示token: {prompt_tokens}, "
f"输出token: {completion_tokens}, "
f"首字用时: {first_token_time:.4f}秒, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}, "
f"用户的内容: {user_content_replaced}, "
f"输出的内容: {response_content_replaced}"
)
with data_lock:
request_timestamps.append(time.time())
token_counts.append(prompt_tokens+completion_tokens)
request_timestamps_day.append(time.time())
token_counts_day.append(prompt_tokens+completion_tokens)
return Response(
stream_with_context(generate()),
content_type=response.headers['Content-Type']
)
else:
response.raise_for_status()
end_time = time.time()
response_json = response.json()
total_time = end_time - start_time
try:
prompt_tokens = response_json["usage"]["prompt_tokens"]
completion_tokens = response_json[
"usage"
]["completion_tokens"]
response_content = response_json[
"choices"
][0]["message"]["content"]
except (KeyError, ValueError, IndexError) as e:
logging.error(
f"解析非流式响应 JSON 失败: {e}, "
f"完整内容: {response_json}"
)
prompt_tokens = 0
completion_tokens = 0
response_content = ""
user_content = extract_user_content(data.get("messages", []))
user_content_replaced = user_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
response_content_replaced = response_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
logging.info(
f"使用的key: {api_key}, "
f"提示token: {prompt_tokens}, "
f"输出token: {completion_tokens}, "
f"首字用时: 0, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}, "
f"用户的内容: {user_content_replaced}, "
f"输出的内容: {response_content_replaced}"
)
with data_lock:
request_timestamps.append(time.time())
if "prompt_tokens" in response_json["usage"] and "completion_tokens" in response_json["usage"]:
token_counts.append(response_json["usage"]["prompt_tokens"] + response_json["usage"]["completion_tokens"])
else:
token_counts.append(0)
request_timestamps_day.append(time.time())
if "prompt_tokens" in response_json["usage"] and "completion_tokens" in response_json["usage"]:
token_counts_day.append(response_json["usage"]["prompt_tokens"] + response_json["usage"]["completion_tokens"])
else:
token_counts_day.append(0)
return jsonify(response_json)
except requests.exceptions.RequestException as e:
logging.error(f"请求转发异常: {e}")
return jsonify({"error": str(e)}), 500
if __name__ == '__main__':
logging.info(f"环境变量:{os.environ}")
load_keys()
logging.info("程序启动时首次加载 keys 已执行")
scheduler.start()
logging.info("首次加载 keys 已手动触发执行")
refresh_models()
logging.info("首次刷新模型列表已手动触发执行")
app.run(
debug=False,
host='0.0.0.0',
port=int(os.environ.get('PORT', 7860))
)