MTVCrafter / models /dit /pipeline_mtvcrafter.py
yanboding's picture
Upload 32 files
30a0a93 verified
import os
import math
import inspect
import numpy as np
from dataclasses import dataclass
from typing import Callable, Dict, List, Optional, Tuple, Union
import torch
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.models import AutoencoderKLCogVideoX
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler
from diffusers.utils import BaseOutput, logging
from diffusers.utils.torch_utils import randn_tensor
from diffusers.video_processor import VideoProcessor
from einops import rearrange
from PIL import Image
from torchvision import transforms
from .mvdit_transformer import Transformer3DModel
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def get_1d_rotary_pos_embed(
dim: int,
pos: Union[np.ndarray, int],
theta: float = 10000.0,
use_real=False,
linear_factor=1.0,
ntk_factor=1.0,
repeat_interleave_real=True,
freqs_dtype=torch.float32, # torch.float32, torch.float64 (flux)
):
"""
Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' and the end
index 'end'. The 'theta' parameter scales the frequencies. The returned tensor contains complex values in complex64
data type.
Args:
dim (`int`): Dimension of the frequency tensor.
pos (`np.ndarray` or `int`): Position indices for the frequency tensor. [S] or scalar
theta (`float`, *optional*, defaults to 10000.0):
Scaling factor for frequency computation. Defaults to 10000.0.
use_real (`bool`, *optional*):
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
linear_factor (`float`, *optional*, defaults to 1.0):
Scaling factor for the context extrapolation. Defaults to 1.0.
ntk_factor (`float`, *optional*, defaults to 1.0):
Scaling factor for the NTK-Aware RoPE. Defaults to 1.0.
repeat_interleave_real (`bool`, *optional*, defaults to `True`):
If `True` and `use_real`, real part and imaginary part are each interleaved with themselves to reach `dim`.
Otherwise, they are concateanted with themselves.
freqs_dtype (`torch.float32` or `torch.float64`, *optional*, defaults to `torch.float32`):
the dtype of the frequency tensor.
Returns:
`torch.Tensor`: Precomputed frequency tensor with complex exponentials. [S, D/2]
"""
assert dim % 2 == 0
if isinstance(pos, int):
pos = torch.arange(pos)
if isinstance(pos, np.ndarray):
pos = torch.from_numpy(pos) # type: ignore # [S]
theta = theta * ntk_factor
freqs = (
1.0
/ (theta ** (torch.arange(0, dim, 2, dtype=freqs_dtype, device=pos.device)[: (dim // 2)] / dim))
/ linear_factor
) # [D/2]
freqs = torch.outer(pos, freqs) # type: ignore # [S, D/2]
if use_real and repeat_interleave_real:
freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D]
freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() # [S, D]
return freqs_cos, freqs_sin
elif use_real:
freqs_cos = torch.cat([freqs.cos(), freqs.cos()], dim=-1).float() # [S, D]
freqs_sin = torch.cat([freqs.sin(), freqs.sin()], dim=-1).float() # [S, D]
return freqs_cos, freqs_sin
else:
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2]
return freqs_cis
def get_3d_rotary_pos_embed(
embed_dim, crops_coords, grid_size, temporal_size, theta: int = 10000, use_real: bool = True
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
RoPE for video tokens with 3D structure.
Args:
embed_dim: (`int`):
The embedding dimension size, corresponding to hidden_size_head.
crops_coords (`Tuple[int]`):
The top-left and bottom-right coordinates of the crop.
grid_size (`Tuple[int]`):
The grid size of the spatial positional embedding (height, width).
temporal_size (`int`):
The size of the temporal dimension.
theta (`float`):
Scaling factor for frequency computation.
Returns:
`torch.Tensor`: positional embedding with shape `(temporal_size * grid_size[0] * grid_size[1], embed_dim/2)`.
"""
if use_real is not True:
raise ValueError(" `use_real = False` is not currently supported for get_3d_rotary_pos_embed")
start, stop = crops_coords
grid_size_h, grid_size_w = grid_size
grid_h = np.linspace(start[0], stop[0], grid_size_h, endpoint=False, dtype=np.float32)
grid_w = np.linspace(start[1], stop[1], grid_size_w, endpoint=False, dtype=np.float32)
grid_t = np.linspace(0, temporal_size, temporal_size, endpoint=False, dtype=np.float32)
# Compute dimensions for each axis
dim_t = embed_dim // 4
dim_h = embed_dim // 8 * 3
dim_w = embed_dim // 8 * 3
# Temporal frequencies
freqs_t = get_1d_rotary_pos_embed(dim_t, grid_t, use_real=True)
# Spatial frequencies for height and width
freqs_h = get_1d_rotary_pos_embed(dim_h, grid_h, use_real=True)
freqs_w = get_1d_rotary_pos_embed(dim_w, grid_w, use_real=True)
# BroadCast and concatenate temporal and spaial frequencie (height and width) into a 3d tensor
def combine_time_height_width(freqs_t, freqs_h, freqs_w):
freqs_t = freqs_t[:, None, None, :].expand(
-1, grid_size_h, grid_size_w, -1
) # temporal_size, grid_size_h, grid_size_w, dim_t
freqs_h = freqs_h[None, :, None, :].expand(
temporal_size, -1, grid_size_w, -1
) # temporal_size, grid_size_h, grid_size_2, dim_h
freqs_w = freqs_w[None, None, :, :].expand(
temporal_size, grid_size_h, -1, -1
) # temporal_size, grid_size_h, grid_size_2, dim_w
freqs = torch.cat(
[freqs_t, freqs_h, freqs_w], dim=-1
) # temporal_size, grid_size_h, grid_size_w, (dim_t + dim_h + dim_w)
freqs = freqs.view(
temporal_size * grid_size_h * grid_size_w, -1
) # (temporal_size * grid_size_h * grid_size_w), (dim_t + dim_h + dim_w)
return freqs
t_cos, t_sin = freqs_t # both t_cos and t_sin has shape: temporal_size, dim_t
h_cos, h_sin = freqs_h # both h_cos and h_sin has shape: grid_size_h, dim_h
w_cos, w_sin = freqs_w # both w_cos and w_sin has shape: grid_size_w, dim_w
cos = combine_time_height_width(t_cos, h_cos, w_cos)
sin = combine_time_height_width(t_sin, h_sin, w_sin)
return cos, sin
def get_3d_motion_spatial_embed(
embed_dim: int, num_joints: int, joints_mean: np.ndarray, joints_std: np.ndarray, theta: float = 10000.0
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
"""
assert embed_dim % 2 == 0 and embed_dim % 3 == 0
def create_rope_pe(dim, pos, freqs_dtype=torch.float32):
if isinstance(pos, np.ndarray):
pos = torch.from_numpy(pos)
freqs = (
1.0
/ (theta ** (torch.arange(0, dim, 2, dtype=freqs_dtype, device=pos.device)[: (dim // 2)] / dim))
) # [D/2]
freqs = torch.outer(pos, freqs) # type: ignore # [S, D/2]
freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D]
freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() # [S, D]
return freqs_cos, freqs_sin
# 为每个轴创建位置编码
# relative_pos_x = joints_mean[:, 0] - joints_mean[0, 0]
# relative_pos_y = joints_mean[:, 1] - joints_mean[0, 1]
# relative_pos_z = joints_mean[:, 2] - joints_mean[0, 2]
# normalized_pos_x = relative_pos_x / joints_std[:, 0].mean()
# normalized_pos_y = relative_pos_y / joints_std[:, 1].mean()
# normalized_pos_z = relative_pos_z / joints_std[:, 2].mean()
pos_x = joints_mean[:, 0]
pos_y = joints_mean[:, 1]
pos_z = joints_mean[:, 2]
normalized_pos_x = (pos_x - pos_x.mean())
normalized_pos_y = (pos_y - pos_y.mean())
normalized_pos_z = (pos_z - pos_z.mean())
freqs_cos_x, freqs_sin_x = create_rope_pe(embed_dim // 3, normalized_pos_x)
freqs_cos_y, freqs_sin_y = create_rope_pe(embed_dim // 3, normalized_pos_y)
freqs_cos_z, freqs_sin_z = create_rope_pe(embed_dim // 3, normalized_pos_z)
freqs_cos = torch.cat([freqs_cos_x, freqs_cos_y, freqs_cos_z], dim=-1)
freqs_sin = torch.cat([freqs_sin_x, freqs_sin_y, freqs_sin_z], dim=-1)
return freqs_cos, freqs_sin
# Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
tw = tgt_width
th = tgt_height
h, w = src
r = h / w
if r > (th / tw):
resize_height = th
resize_width = int(round(th / h * w))
else:
resize_width = tw
resize_height = int(round(tw / w * h))
crop_top = int(round((th - resize_height) / 2.0))
crop_left = int(round((tw - resize_width) / 2.0))
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values')
if timesteps is not None:
accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f' timestep schedules. Please check whether you are using the correct scheduler.'
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f' sigmas schedules. Please check whether you are using the correct scheduler.'
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
@dataclass
class MTVCrafterPipelineOutput(BaseOutput):
r"""Output class for the MTVCrafter pipeline.
Args:
frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape
`(batch_size, num_frames, channels, height, width)`.
"""
frames: torch.Tensor
class MTVCrafterPipeline(DiffusionPipeline):
r"""Pipeline for MTVCrafter.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
transformer ([`Transformer3DModel`]):
A image conditioned `Transformer3DModel` to denoise the encoded video latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
"""
_callback_tensor_inputs = [
'latents',
'prompt_embeds',
'negative_prompt_embeds',
]
def __init__(
self,
vae: AutoencoderKLCogVideoX,
transformer: Transformer3DModel,
scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler],
):
super().__init__()
self.register_modules(
vae=vae,
transformer=transformer,
scheduler=scheduler,
)
self.vae_scale_factor_spatial = (
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, 'vae') and self.vae is not None else 8
)
self.vae_scale_factor_temporal = (
self.vae.config.temporal_compression_ratio if hasattr(self, 'vae') and self.vae is not None else 4
)
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
self.normalize = transforms.Normalize([0.5], [0.5])
@classmethod
def from_pretrained(
cls,
model_path,
transformer_model_path=None,
scheduler_type='ddim',
torch_dtype=None,
**kwargs,
):
if transformer_model_path is None:
transformer_model_path = os.path.join(model_path, 'transformer')
transformer = Transformer3DModel.from_pretrained(
transformer_model_path, torch_dtype=torch_dtype, **kwargs
)
if scheduler_type == 'ddim':
scheduler = CogVideoXDDIMScheduler.from_pretrained(model_path, subfolder='scheduler')
elif scheduler_type == 'dpm':
scheduler = CogVideoXDPMScheduler.from_pretrained(model_path, subfolder='scheduler')
else:
assert False
pipe = super().from_pretrained(
model_path, transformer=transformer, scheduler=scheduler, torch_dtype=torch_dtype, **kwargs
)
return pipe
def prepare_latents(
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
):
shape = (
batch_size,
(num_frames - 1) // self.vae_scale_factor_temporal + 1,
num_channels_latents,
height // self.vae_scale_factor_spatial,
width // self.vae_scale_factor_spatial,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f'You have passed a list of generators of length {len(generator)}, but requested an effective batch'
f' size of {batch_size}. Make sure the batch size matches the length of the generators.'
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def decode_latents(self, latents: torch.Tensor) -> torch.Tensor:
latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
latents = 1 / self.vae.config.scaling_factor * latents
frames = self.vae.decode(latents).sample
return frames
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper and should be between [0, 1]
accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs['eta'] = eta
# check if the scheduler accepts generator
accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs['generator'] = generator
return extra_step_kwargs
# Copied from diffusers.pipelines.latte.pipeline_latte.LattePipeline.check_inputs
def check_inputs(
self,
height,
width,
callback_on_step_end_tensor_inputs,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.')
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found '
f'{[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}'
)
def _prepare_rotary_positional_embeddings(
self,
height: int,
width: int,
num_frames: int,
device: torch.device,
dtype: torch.dtype,
) -> Tuple[torch.Tensor, torch.Tensor]:
grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
grid_crops_coords = ((0, 0), (grid_height, grid_width))
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
embed_dim=self.transformer.config.attention_head_dim,
crops_coords=grid_crops_coords,
grid_size=(grid_height, grid_width),
temporal_size=num_frames,
)
freqs_cos = freqs_cos.to(device=device, dtype=dtype)
freqs_sin = freqs_sin.to(device=device, dtype=dtype)
return freqs_cos, freqs_sin
def _prepare_motion_embeddings(self, num_frames, num_joints, joints_mean, joints_std, device, dtype):
time_embed = get_1d_rotary_pos_embed(self.transformer.config.attention_head_dim // 4, num_frames, use_real=True)
time_embed_cos = time_embed[0][:, None, :].expand(-1, num_joints, -1).reshape(num_frames*num_joints, -1)
time_embed_sin = time_embed[1][:, None, :].expand(-1, num_joints, -1).reshape(num_frames*num_joints, -1)
spatial_motion_embed = get_3d_motion_spatial_embed(self.transformer.config.attention_head_dim // 4 * 3, num_joints, joints_mean, joints_std)
spatial_embed_cos = spatial_motion_embed[0][None, :, :].expand(num_frames, -1, -1).reshape(num_frames*num_joints, -1)
spatial_embed_sin = spatial_motion_embed[1][None, :, :].expand(num_frames, -1, -1).reshape(num_frames*num_joints, -1)
motion_embed_cos = torch.cat([time_embed_cos, spatial_embed_cos], dim=-1).to(device=device, dtype=dtype)
motion_embed_sin = torch.cat([time_embed_sin, spatial_embed_sin], dim=-1).to(device=device, dtype=dtype)
return motion_embed_cos, motion_embed_sin
@property
def guidance_scale(self):
return self._guidance_scale
@property
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
def __call__(
self,
prompt: Optional[Union[str, List[str]]] = None,
negative_prompt: Optional[Union[str, List[str]]] = None,
height: int = 480,
width: int = 720,
num_frames: int = 49,
num_inference_steps: int = 50,
timesteps: Optional[List[int]] = None,
guidance_scale: float = 6,
use_dynamic_cfg: bool = False,
num_videos_per_prompt: int = 1,
eta: float = 0.0,
seed: Optional[int] = -1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: str = 'pil',
return_dict: bool = True,
callback_on_step_end: Optional[
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
] = None,
callback_on_step_end_tensor_inputs: List[str] = ['latents'],
max_sequence_length: int = 226,
ref_images: List[Image.Image] = None,
motion_embeds: Optional[torch.FloatTensor] = None,
joint_mean: Optional[np.ndarray] = None,
joint_std: Optional[np.ndarray] = None,
) -> Union[MTVCrafterPipelineOutput, Tuple]:
"""Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
num_frames (`int`, defaults to `48`):
Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will
contain 1 extra frame because CogVideoX is conditioned with (num_seconds * fps + 1) frames where
num_seconds is 6 and fps is 4. However, since videos can be saved at any fps, the only condition that
needs to be satisfied is that of divisibility mentioned above.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 7.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance]. Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_videos_per_prompt (`int`, *optional*, defaults to 1):
The number of videos to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)]
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
of a plain tuple.
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int`, defaults to `226`):
Maximum sequence length in encoded prompt. Must be consistent with
`self.transformer.config.max_text_seq_length` otherwise may lead to poor results.
"""
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
height = height or self.transformer.config.sample_size * self.vae_scale_factor_spatial
width = width or self.transformer.config.sample_size * self.vae_scale_factor_spatial
# 720 * 480
num_videos_per_prompt = 1
# 1. Check inputs. Raise error if not correct
self.check_inputs(
height,
width,
callback_on_step_end_tensor_inputs,
)
self._guidance_scale = guidance_scale
self._interrupt = False
# 2. Default call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
elif prompt is None:
batch_size = 1
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
if seed > 0:
generator = torch.Generator(device=device)
generator.manual_seed(seed)
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
self._num_timesteps = len(timesteps)
# 4. Prepare latents.
latent_channels = self.vae.config.latent_channels
latents = self.prepare_latents(
batch_size * num_videos_per_prompt,
latent_channels,
num_frames,
height,
width,
self.vae.dtype,
device,
generator,
latents,
) # [1, x, 16, h/8, w/8]
if ref_images is not None:
ref_images = rearrange(ref_images.unsqueeze(0), 'b f c h w -> b c f h w')
ref_latents = self.vae.encode(
ref_images.to(dtype=self.vae.dtype, device=self.vae.device)
).latent_dist.sample()
ref_latents = rearrange(ref_latents, 'b c f h w -> b f c h w')
if do_classifier_free_guidance:
ref_latents = torch.cat([ref_latents, ref_latents], dim=0)
motion_embeds = motion_embeds.to(latents.dtype)
if motion_embeds is not None and do_classifier_free_guidance:
motion_embeds = torch.cat([self.transformer.unconditional_motion_token.unsqueeze(0), motion_embeds], dim=0)
# 5. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 6. Create rotary embeds if required
image_rotary_emb = (
self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device, dtype=latents.dtype)
if self.transformer.config.use_rotary_positional_embeddings
else None
)
motion_rotary_emb = self._prepare_motion_embeddings(latents.size(1), 24, joint_mean, joint_std, device, dtype=latents.dtype)
# 7. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
with self.progress_bar(total=num_inference_steps) as progress_bar:
# for DPM-solver++
old_pred_original_sample = None
for i, t in enumerate(timesteps):
if self.interrupt:
continue
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latent_model_input.shape[0])
if ref_images is not None:
latent_model_input = torch.cat([latent_model_input, ref_latents], dim=2)
# predict noise model_output
noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=timestep.long(),
image_rotary_emb=image_rotary_emb,
motion_rotary_emb=motion_rotary_emb,
motion_emb=motion_embeds,
return_dict=False,
)[0]
noise_pred = noise_pred.float() # [b, f, c, h, w]
# perform guidance
if use_dynamic_cfg:
self._guidance_scale = 1 + guidance_scale * (
(1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2
)
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
if not isinstance(self.scheduler, CogVideoXDPMScheduler):
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
else:
latents, old_pred_original_sample = self.scheduler.step(
noise_pred,
old_pred_original_sample,
t,
timesteps[i - 1] if i > 0 else None,
latents,
**extra_step_kwargs,
return_dict=False,
)
latents = latents.to(self.vae.dtype)
# call the callback, if provided
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop('latents', latents)
prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds)
negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds)
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if not output_type == 'latent':
video = self.decode_latents(latents)
video = self.video_processor.postprocess_video(video=video, output_type=output_type)
else:
video = latents
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (video,)
return MTVCrafterPipelineOutput(frames=video)