Spaces:
Runtime error
Runtime error
from typing import Any, Dict, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models.attention import Attention, FeedForward | |
from diffusers.models.attention_processor import AttentionProcessor, FusedCogVideoXAttnProcessor2_0 | |
from diffusers.models.embeddings import TimestepEmbedding, Timesteps, get_3d_sincos_pos_embed | |
from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.normalization import AdaLayerNorm | |
from diffusers.utils import is_torch_version, logging | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
def apply_rotary_emb( | |
x: torch.Tensor, | |
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], | |
use_real: bool = True, | |
use_real_unbind_dim: int = -1, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings | |
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are | |
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting | |
tensors contain rotary embeddings and are returned as real tensors. | |
Args: | |
x (`torch.Tensor`): | |
Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply | |
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],) | |
Returns: | |
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings. | |
""" | |
if use_real: | |
cos, sin = freqs_cis # [S, D] | |
cos = cos[None, None] | |
sin = sin[None, None] | |
cos, sin = cos.to(x.device), sin.to(x.device) | |
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2] | |
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3) | |
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype) | |
return out | |
else: | |
# used for lumina | |
x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2)) | |
freqs_cis = freqs_cis.unsqueeze(2) | |
x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3) | |
return x_out.type_as(x) | |
class CogVideoXLayerNormZero(nn.Module): | |
def __init__( | |
self, | |
conditioning_dim: int, | |
embedding_dim: int, | |
elementwise_affine: bool = True, | |
eps: float = 1e-5, | |
bias: bool = True, | |
) -> None: | |
super().__init__() | |
self.silu = nn.SiLU() | |
self.linear = nn.Linear(conditioning_dim, 6 * embedding_dim, bias=bias) | |
self.norm = nn.LayerNorm(embedding_dim, eps=eps, elementwise_affine=elementwise_affine) | |
def forward( | |
self, hidden_states: torch.Tensor, temb: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
shift, scale, gate, _, _, _ = self.linear(self.silu(temb)).chunk(6, dim=1) | |
hidden_states = self.norm(hidden_states) * (1 + scale)[:, None, :] + shift[:, None, :] | |
return hidden_states, gate[:, None, :] | |
class CogVideoXAttnProcessor1_0: | |
r"""Processor for implementing scaled dot-product attention for the | |
CogVideoX model. | |
It applies a rotary embedding on query and key vectors, but does not include spatial normalization. | |
""" | |
def __init__(self): | |
if not hasattr(F, 'scaled_dot_product_attention'): | |
raise ImportError('CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.') | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
image_rotary_emb: Optional[torch.Tensor] = None, | |
motion_rotary_emb: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
batch_size, sequence_length, _ = hidden_states.shape | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
query = attn.to_q(hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # [batch_size, heads, seq_len, dim] | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
if attn.norm_q is not None: | |
query = attn.norm_q(query) | |
if attn.norm_k is not None: | |
key = attn.norm_k(key) | |
# Apply RoPE if needed | |
if image_rotary_emb is not None: | |
query = apply_rotary_emb(query, image_rotary_emb) | |
if motion_rotary_emb is not None: | |
key = apply_rotary_emb(key, motion_rotary_emb) | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
return hidden_states | |
class CogVideoXAttnProcessor2_0: | |
r"""Processor for implementing scaled dot-product attention for the | |
CogVideoX model. | |
It applies a rotary embedding on query and key vectors, but does not include spatial normalization. | |
""" | |
def __init__(self): | |
if not hasattr(F, 'scaled_dot_product_attention'): | |
raise ImportError('CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.') | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
image_rotary_emb: Optional[torch.Tensor] = None, | |
motion_rotary_emb: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
batch_size, sequence_length, _ = hidden_states.shape | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
query = attn.to_q(hidden_states) | |
key = attn.to_k(hidden_states) | |
value = attn.to_v(hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # [batch_size, heads, seq_len, dim] | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
if attn.norm_q is not None: | |
query = attn.norm_q(query) | |
if attn.norm_k is not None: | |
key = attn.norm_k(key) | |
# Apply RoPE if needed | |
if image_rotary_emb is not None: | |
image_seq_length = image_rotary_emb[0].shape[0] | |
query[:, :, :image_seq_length] = apply_rotary_emb(query[:, :, :image_seq_length], image_rotary_emb) | |
if motion_rotary_emb is not None: | |
query[:, :, image_seq_length:] = apply_rotary_emb(query[:, :, image_seq_length:], motion_rotary_emb) | |
if not attn.is_cross_attention: | |
key[:, :, :image_seq_length] = apply_rotary_emb(key[:, :, :image_seq_length], image_rotary_emb) | |
if motion_rotary_emb is not None: | |
key[:, :, image_seq_length:] = apply_rotary_emb(key[:, :, image_seq_length:], motion_rotary_emb) | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
return hidden_states | |
class CogVideoXPatchEmbed(nn.Module): | |
def __init__( | |
self, | |
patch_size: int = 2, | |
in_channels: int = 16, | |
embed_dim: int = 1920, | |
text_embed_dim: int = 4096, | |
bias: bool = True, | |
sample_width: int = 90, | |
sample_height: int = 60, | |
sample_frames: int = 49, | |
temporal_compression_ratio: int = 4, | |
max_text_seq_length: int = 226, | |
spatial_interpolation_scale: float = 1.875, | |
temporal_interpolation_scale: float = 1.0, | |
use_positional_embeddings: bool = True, | |
) -> None: | |
super().__init__() | |
self.patch_size = patch_size | |
self.embed_dim = embed_dim | |
self.sample_height = sample_height | |
self.sample_width = sample_width | |
self.sample_frames = sample_frames | |
self.temporal_compression_ratio = temporal_compression_ratio | |
self.max_text_seq_length = max_text_seq_length | |
self.spatial_interpolation_scale = spatial_interpolation_scale | |
self.temporal_interpolation_scale = temporal_interpolation_scale | |
self.use_positional_embeddings = use_positional_embeddings | |
self.proj = nn.Conv2d( | |
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias | |
) | |
self.text_proj = nn.Linear(text_embed_dim, embed_dim) | |
if use_positional_embeddings: | |
pos_embedding = self._get_positional_embeddings(sample_height, sample_width, sample_frames) | |
self.register_buffer('pos_embedding', pos_embedding, persistent=False) | |
def _get_positional_embeddings(self, sample_height: int, sample_width: int, sample_frames: int) -> torch.Tensor: | |
post_patch_height = sample_height // self.patch_size | |
post_patch_width = sample_width // self.patch_size | |
post_time_compression_frames = (sample_frames - 1) // self.temporal_compression_ratio + 1 | |
num_patches = post_patch_height * post_patch_width * post_time_compression_frames | |
pos_embedding = get_3d_sincos_pos_embed( | |
self.embed_dim, | |
(post_patch_width, post_patch_height), | |
post_time_compression_frames, | |
self.spatial_interpolation_scale, | |
self.temporal_interpolation_scale, | |
) | |
pos_embedding = torch.from_numpy(pos_embedding).flatten(0, 1) | |
joint_pos_embedding = torch.zeros( | |
1, self.max_text_seq_length + num_patches, self.embed_dim, requires_grad=False | |
) | |
joint_pos_embedding.data[:, self.max_text_seq_length :].copy_(pos_embedding) | |
return joint_pos_embedding | |
def forward(self, image_embeds: torch.Tensor): | |
r""" | |
Args: | |
text_embeds (`torch.Tensor`): | |
Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim). | |
image_embeds (`torch.Tensor`): | |
Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width). | |
""" | |
batch, num_frames, channels, height, width = image_embeds.shape | |
image_embeds = image_embeds.reshape(-1, channels, height, width) | |
image_embeds = self.proj(image_embeds) # [2*7, 3072, h/8/2, w/8/2] | |
image_embeds = image_embeds.view(batch, num_frames, *image_embeds.shape[1:]) | |
image_embeds = image_embeds.flatten(3).transpose(2, 3) # [batch, num_frames, height x width, channels] | |
image_embeds = image_embeds.flatten(1, 2).contiguous() # [batch, num_frames x height x width, channels] | |
if self.use_positional_embeddings: | |
pre_time_compression_frames = (num_frames - 1) * self.temporal_compression_ratio + 1 | |
if ( | |
self.sample_height != height | |
or self.sample_width != width | |
or self.sample_frames != pre_time_compression_frames | |
): | |
pos_embedding = self._get_positional_embeddings(height, width, pre_time_compression_frames) | |
pos_embedding = pos_embedding.to(embeds.device, dtype=embeds.dtype) | |
else: | |
pos_embedding = self.pos_embedding | |
embeds = embeds + pos_embedding | |
return image_embeds | |
class CogVideoXBlock(nn.Module): | |
r""" | |
Parameters: | |
dim (`int`): | |
The number of channels in the input and output. | |
num_attention_heads (`int`): | |
The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): | |
The number of channels in each head. | |
time_embed_dim (`int`): | |
The number of channels in timestep embedding. | |
dropout (`float`, defaults to `0.0`): | |
The dropout probability to use. | |
activation_fn (`str`, defaults to `"gelu-approximate"`): | |
Activation function to be used in feed-forward. | |
attention_bias (`bool`, defaults to `False`): | |
Whether or not to use bias in attention projection layers. | |
qk_norm (`bool`, defaults to `True`): | |
Whether or not to use normalization after query and key projections in Attention. | |
norm_elementwise_affine (`bool`, defaults to `True`): | |
Whether to use learnable elementwise affine parameters for normalization. | |
norm_eps (`float`, defaults to `1e-5`): | |
Epsilon value for normalization layers. | |
final_dropout (`bool` defaults to `False`): | |
Whether to apply a final dropout after the last feed-forward layer. | |
ff_inner_dim (`int`, *optional*, defaults to `None`): | |
Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used. | |
ff_bias (`bool`, defaults to `True`): | |
Whether or not to use bias in Feed-forward layer. | |
attention_out_bias (`bool`, defaults to `True`): | |
Whether or not to use bias in Attention output projection layer. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
time_embed_dim: int, | |
motion_dim: int, | |
dropout: float = 0.0, | |
activation_fn: str = 'gelu-approximate', | |
attention_bias: bool = False, | |
qk_norm: bool = True, | |
norm_elementwise_affine: bool = True, | |
norm_eps: float = 1e-5, | |
final_dropout: bool = True, | |
ff_inner_dim: Optional[int] = None, | |
ff_bias: bool = True, | |
attention_out_bias: bool = True, | |
cross_attention: bool = False, | |
): | |
super().__init__() | |
self.is_cross_attention = cross_attention | |
if self.is_cross_attention: | |
self.attn0 = Attention( | |
query_dim=dim, | |
cross_attention_dim=dim, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
qk_norm='layer_norm' if qk_norm else None, | |
eps=1e-6, | |
bias=attention_bias, | |
out_bias=attention_out_bias, | |
processor=CogVideoXAttnProcessor1_0(), | |
) | |
# 1. Self Attention | |
self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) | |
self.attn1 = Attention( | |
query_dim=dim, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
qk_norm='layer_norm' if qk_norm else None, | |
eps=1e-6, | |
bias=attention_bias, | |
out_bias=attention_out_bias, | |
processor=CogVideoXAttnProcessor2_0(), | |
) | |
# 2. Feed Forward | |
self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) | |
self.ff = FeedForward( | |
dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
final_dropout=final_dropout, | |
inner_dim=ff_inner_dim, | |
bias=ff_bias, | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
temb: torch.Tensor, | |
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
motion_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
) -> torch.Tensor: | |
# norm & modulate | |
norm_hidden_states, gate_msa = self.norm1(hidden_states, temb) | |
# self attention | |
attn_hidden_states = self.attn1( | |
hidden_states=norm_hidden_states, | |
image_rotary_emb=image_rotary_emb, | |
) | |
hidden_states = hidden_states + gate_msa * attn_hidden_states | |
if self.is_cross_attention: | |
cross_attn_hidden_states = self.attn0( | |
hidden_states=hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
image_rotary_emb=image_rotary_emb, | |
motion_rotary_emb=motion_rotary_emb, | |
) | |
hidden_states = hidden_states + cross_attn_hidden_states | |
# norm & modulate | |
norm_hidden_states, gate_ff = self.norm2(hidden_states, temb) | |
# feed-forward | |
ff_output = self.ff(norm_hidden_states) | |
hidden_states = hidden_states + gate_ff * ff_output | |
return hidden_states | |
class Transformer3DModel(ModelMixin, ConfigMixin): | |
""" | |
Parameters: | |
num_attention_heads (`int`, defaults to `30`): | |
The number of heads to use for multi-head attention. | |
attention_head_dim (`int`, defaults to `64`): | |
The number of channels in each head. | |
in_channels (`int`, defaults to `16`): | |
The number of channels in the input. | |
out_channels (`int`, *optional*, defaults to `16`): | |
The number of channels in the output. | |
flip_sin_to_cos (`bool`, defaults to `True`): | |
Whether to flip the sin to cos in the time embedding. | |
time_embed_dim (`int`, defaults to `512`): | |
Output dimension of timestep embeddings. | |
text_embed_dim (`int`, defaults to `4096`): | |
Input dimension of text embeddings from the text encoder. | |
num_layers (`int`, defaults to `30`): | |
The number of layers of Transformer blocks to use. | |
dropout (`float`, defaults to `0.0`): | |
The dropout probability to use. | |
attention_bias (`bool`, defaults to `True`): | |
Whether or not to use bias in the attention projection layers. | |
sample_width (`int`, defaults to `90`): | |
The width of the input latents. | |
sample_height (`int`, defaults to `60`): | |
The height of the input latents. | |
sample_frames (`int`, defaults to `49`): | |
The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49 | |
instead of 13 because CogVideoX processed 13 latent frames at once in its default and recommended settings, | |
but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with | |
K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1). | |
patch_size (`int`, defaults to `2`): | |
The size of the patches to use in the patch embedding layer. | |
temporal_compression_ratio (`int`, defaults to `4`): | |
The compression ratio across the temporal dimension. See documentation for `sample_frames`. | |
max_text_seq_length (`int`, defaults to `226`): | |
The maximum sequence length of the input text embeddings. | |
activation_fn (`str`, defaults to `"gelu-approximate"`): | |
Activation function to use in feed-forward. | |
timestep_activation_fn (`str`, defaults to `"silu"`): | |
Activation function to use when generating the timestep embeddings. | |
norm_elementwise_affine (`bool`, defaults to `True`): | |
Whether or not to use elementwise affine in normalization layers. | |
norm_eps (`float`, defaults to `1e-5`): | |
The epsilon value to use in normalization layers. | |
spatial_interpolation_scale (`float`, defaults to `1.875`): | |
Scaling factor to apply in 3D positional embeddings across spatial dimensions. | |
temporal_interpolation_scale (`float`, defaults to `1.0`): | |
Scaling factor to apply in 3D positional embeddings across temporal dimensions. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
num_attention_heads: int = 30, | |
attention_head_dim: int = 64, | |
in_channels: int = 16, | |
out_channels: Optional[int] = 16, | |
flip_sin_to_cos: bool = True, | |
freq_shift: int = 0, | |
time_embed_dim: int = 512, | |
text_embed_dim: int = 4096, | |
motion_dim: int = 168, | |
num_layers: int = 30, | |
dropout: float = 0.0, | |
attention_bias: bool = True, | |
sample_width: int = 90, | |
sample_height: int = 60, | |
sample_frames: int = 49, | |
patch_size: int = 2, | |
temporal_compression_ratio: int = 4, | |
max_text_seq_length: int = 226, | |
activation_fn: str = 'gelu-approximate', | |
timestep_activation_fn: str = 'silu', | |
norm_elementwise_affine: bool = True, | |
norm_eps: float = 1e-5, | |
spatial_interpolation_scale: float = 1.875, | |
temporal_interpolation_scale: float = 1.0, | |
use_rotary_positional_embeddings: bool = False, | |
): | |
super().__init__() | |
inner_dim = num_attention_heads * attention_head_dim # 48 * 64 = 3072 | |
self.unconditional_motion_token = torch.nn.Parameter(torch.randn(312, 3072)) | |
print(self.unconditional_motion_token[0]) | |
# 1. Patch embedding | |
self.patch_embed = CogVideoXPatchEmbed( | |
patch_size=patch_size, | |
in_channels=in_channels, | |
embed_dim=inner_dim, | |
text_embed_dim=text_embed_dim, | |
bias=True, | |
sample_width=sample_width, | |
sample_height=sample_height, | |
sample_frames=sample_frames, | |
temporal_compression_ratio=temporal_compression_ratio, | |
max_text_seq_length=max_text_seq_length, | |
spatial_interpolation_scale=spatial_interpolation_scale, | |
temporal_interpolation_scale=temporal_interpolation_scale, | |
use_positional_embeddings=not use_rotary_positional_embeddings, | |
) | |
self.embedding_dropout = nn.Dropout(dropout) | |
# 2. Time embeddings | |
self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift) | |
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn) # 3072 --> 512 | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
CogVideoXBlock( | |
dim=inner_dim, | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=attention_head_dim, | |
time_embed_dim=time_embed_dim, | |
motion_dim=motion_dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
attention_bias=attention_bias, | |
norm_elementwise_affine=norm_elementwise_affine, | |
norm_eps=norm_eps, | |
cross_attention=True, | |
) | |
for _ in range(num_layers) | |
] | |
) | |
self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine) | |
# 4. Output blocks | |
self.norm_out = AdaLayerNorm( | |
embedding_dim=time_embed_dim, | |
output_dim=2 * inner_dim, | |
norm_elementwise_affine=norm_elementwise_affine, | |
norm_eps=norm_eps, | |
chunk_dim=1, | |
) | |
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels) | |
self.gradient_checkpointing = False | |
def _set_gradient_checkpointing(self, module, value=False): | |
self.gradient_checkpointing = value | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
if hasattr(module, 'get_processor'): | |
processors[f'{name}.processor'] = module.get_processor() | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
r"""Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f'A dict of processors was passed, but the number of processors {len(processor)} does not match the' | |
f' number of attention layers: {count}. Please make sure to pass {count} processor classes.' | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, 'set_processor'): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f'{name}.processor')) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with | |
# FusedAttnProcessor2_0->FusedCogVideoXAttnProcessor2_0 | |
def fuse_qkv_projections(self): | |
"""Enables fused QKV projections. For self-attention modules, all | |
projection matrices (i.e., query, key, value) are fused. For cross- | |
attention modules, key and value projection matrices are fused. | |
<Tip warning={true}> | |
This API is 🧪 experimental. | |
</Tip> | |
""" | |
self.original_attn_processors = None | |
for _, attn_processor in self.attn_processors.items(): | |
if 'Added' in str(attn_processor.__class__.__name__): | |
raise ValueError('`fuse_qkv_projections()` is not supported for models having added KV projections.') | |
self.original_attn_processors = self.attn_processors | |
for module in self.modules(): | |
if isinstance(module, Attention): | |
module.fuse_projections(fuse=True) | |
self.set_attn_processor(FusedCogVideoXAttnProcessor2_0()) | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections | |
def unfuse_qkv_projections(self): | |
"""Disables the fused QKV projection if enabled. | |
<Tip warning={true}> | |
This API is 🧪 experimental. | |
</Tip> | |
""" | |
if self.original_attn_processors is not None: | |
self.set_attn_processor(self.original_attn_processors) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
timestep: Union[int, float, torch.LongTensor], | |
timestep_cond: Optional[torch.Tensor] = None, | |
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
motion_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
motion_emb: Optional[torch.Tensor] = None, | |
camera_emb: Optional[torch.Tensor] = None, | |
need_broadcast: bool = True, | |
return_dict: bool = True, | |
): | |
batch_size, num_frames, channels, height, width = hidden_states.shape | |
# 1. Time embedding | |
timesteps = timestep | |
t_emb = self.time_proj(timesteps) | |
# timesteps does not contain any weights and will always return f32 tensors | |
# but time_embedding might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
t_emb = t_emb.to(dtype=hidden_states.dtype) # (2, 3072) | |
emb = self.time_embedding(t_emb, timestep_cond) # (2, 3072) --> (2, 512) | |
# 2. Patch embedding | |
hidden_states = self.patch_embed(hidden_states) # (2, 226+9450, dim=3072) | |
hidden_states = self.embedding_dropout(hidden_states) | |
image_seq_length = image_rotary_emb[0].shape[0] | |
motion_seq_length = motion_emb.shape[1] # 168 | |
# hidden_states = hidden_states[:, motion_seq_length:] | |
encoder_hidden_states = motion_emb | |
# encoder_hidden_states = self.motion_proj(motion_emb) | |
# 3. Transformer blocks | |
for i, block in enumerate(self.transformer_blocks): | |
if self.training and self.gradient_checkpointing: # train with gradient checkpointing to save memory | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} | |
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
encoder_hidden_states, | |
emb, | |
image_rotary_emb, | |
motion_rotary_emb, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states = block( | |
hidden_states=hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
temb=emb, | |
image_rotary_emb=image_rotary_emb, | |
motion_rotary_emb=motion_rotary_emb, | |
) | |
# 4. Final block | |
hidden_states = self.norm_final(hidden_states) | |
hidden_states = self.norm_out(hidden_states, temb=emb) | |
hidden_states = self.proj_out(hidden_states) | |
# 5. Unpatchify | |
p = self.config.patch_size | |
output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, -1, p, p) | |
output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4) | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) | |