MTVCrafter / models /dit /mvdit_transformer.py
yanboding's picture
Upload 32 files
30a0a93 verified
from typing import Any, Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.attention import Attention, FeedForward
from diffusers.models.attention_processor import AttentionProcessor, FusedCogVideoXAttnProcessor2_0
from diffusers.models.embeddings import TimestepEmbedding, Timesteps, get_3d_sincos_pos_embed
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNorm
from diffusers.utils import is_torch_version, logging
from diffusers.utils.torch_utils import maybe_allow_in_graph
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def apply_rotary_emb(
x: torch.Tensor,
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
use_real: bool = True,
use_real_unbind_dim: int = -1,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
tensors contain rotary embeddings and are returned as real tensors.
Args:
x (`torch.Tensor`):
Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
"""
if use_real:
cos, sin = freqs_cis # [S, D]
cos = cos[None, None]
sin = sin[None, None]
cos, sin = cos.to(x.device), sin.to(x.device)
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
return out
else:
# used for lumina
x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
freqs_cis = freqs_cis.unsqueeze(2)
x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)
return x_out.type_as(x)
class CogVideoXLayerNormZero(nn.Module):
def __init__(
self,
conditioning_dim: int,
embedding_dim: int,
elementwise_affine: bool = True,
eps: float = 1e-5,
bias: bool = True,
) -> None:
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(conditioning_dim, 6 * embedding_dim, bias=bias)
self.norm = nn.LayerNorm(embedding_dim, eps=eps, elementwise_affine=elementwise_affine)
def forward(
self, hidden_states: torch.Tensor, temb: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
shift, scale, gate, _, _, _ = self.linear(self.silu(temb)).chunk(6, dim=1)
hidden_states = self.norm(hidden_states) * (1 + scale)[:, None, :] + shift[:, None, :]
return hidden_states, gate[:, None, :]
class CogVideoXAttnProcessor1_0:
r"""Processor for implementing scaled dot-product attention for the
CogVideoX model.
It applies a rotary embedding on query and key vectors, but does not include spatial normalization.
"""
def __init__(self):
if not hasattr(F, 'scaled_dot_product_attention'):
raise ImportError('CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.')
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
motion_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.Tensor:
batch_size, sequence_length, _ = hidden_states.shape
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
query = attn.to_q(hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # [batch_size, heads, seq_len, dim]
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb)
if motion_rotary_emb is not None:
key = apply_rotary_emb(key, motion_rotary_emb)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class CogVideoXAttnProcessor2_0:
r"""Processor for implementing scaled dot-product attention for the
CogVideoX model.
It applies a rotary embedding on query and key vectors, but does not include spatial normalization.
"""
def __init__(self):
if not hasattr(F, 'scaled_dot_product_attention'):
raise ImportError('CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.')
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
motion_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.Tensor:
batch_size, sequence_length, _ = hidden_states.shape
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # [batch_size, heads, seq_len, dim]
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if image_rotary_emb is not None:
image_seq_length = image_rotary_emb[0].shape[0]
query[:, :, :image_seq_length] = apply_rotary_emb(query[:, :, :image_seq_length], image_rotary_emb)
if motion_rotary_emb is not None:
query[:, :, image_seq_length:] = apply_rotary_emb(query[:, :, image_seq_length:], motion_rotary_emb)
if not attn.is_cross_attention:
key[:, :, :image_seq_length] = apply_rotary_emb(key[:, :, :image_seq_length], image_rotary_emb)
if motion_rotary_emb is not None:
key[:, :, image_seq_length:] = apply_rotary_emb(key[:, :, image_seq_length:], motion_rotary_emb)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class CogVideoXPatchEmbed(nn.Module):
def __init__(
self,
patch_size: int = 2,
in_channels: int = 16,
embed_dim: int = 1920,
text_embed_dim: int = 4096,
bias: bool = True,
sample_width: int = 90,
sample_height: int = 60,
sample_frames: int = 49,
temporal_compression_ratio: int = 4,
max_text_seq_length: int = 226,
spatial_interpolation_scale: float = 1.875,
temporal_interpolation_scale: float = 1.0,
use_positional_embeddings: bool = True,
) -> None:
super().__init__()
self.patch_size = patch_size
self.embed_dim = embed_dim
self.sample_height = sample_height
self.sample_width = sample_width
self.sample_frames = sample_frames
self.temporal_compression_ratio = temporal_compression_ratio
self.max_text_seq_length = max_text_seq_length
self.spatial_interpolation_scale = spatial_interpolation_scale
self.temporal_interpolation_scale = temporal_interpolation_scale
self.use_positional_embeddings = use_positional_embeddings
self.proj = nn.Conv2d(
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
)
self.text_proj = nn.Linear(text_embed_dim, embed_dim)
if use_positional_embeddings:
pos_embedding = self._get_positional_embeddings(sample_height, sample_width, sample_frames)
self.register_buffer('pos_embedding', pos_embedding, persistent=False)
def _get_positional_embeddings(self, sample_height: int, sample_width: int, sample_frames: int) -> torch.Tensor:
post_patch_height = sample_height // self.patch_size
post_patch_width = sample_width // self.patch_size
post_time_compression_frames = (sample_frames - 1) // self.temporal_compression_ratio + 1
num_patches = post_patch_height * post_patch_width * post_time_compression_frames
pos_embedding = get_3d_sincos_pos_embed(
self.embed_dim,
(post_patch_width, post_patch_height),
post_time_compression_frames,
self.spatial_interpolation_scale,
self.temporal_interpolation_scale,
)
pos_embedding = torch.from_numpy(pos_embedding).flatten(0, 1)
joint_pos_embedding = torch.zeros(
1, self.max_text_seq_length + num_patches, self.embed_dim, requires_grad=False
)
joint_pos_embedding.data[:, self.max_text_seq_length :].copy_(pos_embedding)
return joint_pos_embedding
def forward(self, image_embeds: torch.Tensor):
r"""
Args:
text_embeds (`torch.Tensor`):
Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim).
image_embeds (`torch.Tensor`):
Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width).
"""
batch, num_frames, channels, height, width = image_embeds.shape
image_embeds = image_embeds.reshape(-1, channels, height, width)
image_embeds = self.proj(image_embeds) # [2*7, 3072, h/8/2, w/8/2]
image_embeds = image_embeds.view(batch, num_frames, *image_embeds.shape[1:])
image_embeds = image_embeds.flatten(3).transpose(2, 3) # [batch, num_frames, height x width, channels]
image_embeds = image_embeds.flatten(1, 2).contiguous() # [batch, num_frames x height x width, channels]
if self.use_positional_embeddings:
pre_time_compression_frames = (num_frames - 1) * self.temporal_compression_ratio + 1
if (
self.sample_height != height
or self.sample_width != width
or self.sample_frames != pre_time_compression_frames
):
pos_embedding = self._get_positional_embeddings(height, width, pre_time_compression_frames)
pos_embedding = pos_embedding.to(embeds.device, dtype=embeds.dtype)
else:
pos_embedding = self.pos_embedding
embeds = embeds + pos_embedding
return image_embeds
@maybe_allow_in_graph
class CogVideoXBlock(nn.Module):
r"""
Parameters:
dim (`int`):
The number of channels in the input and output.
num_attention_heads (`int`):
The number of heads to use for multi-head attention.
attention_head_dim (`int`):
The number of channels in each head.
time_embed_dim (`int`):
The number of channels in timestep embedding.
dropout (`float`, defaults to `0.0`):
The dropout probability to use.
activation_fn (`str`, defaults to `"gelu-approximate"`):
Activation function to be used in feed-forward.
attention_bias (`bool`, defaults to `False`):
Whether or not to use bias in attention projection layers.
qk_norm (`bool`, defaults to `True`):
Whether or not to use normalization after query and key projections in Attention.
norm_elementwise_affine (`bool`, defaults to `True`):
Whether to use learnable elementwise affine parameters for normalization.
norm_eps (`float`, defaults to `1e-5`):
Epsilon value for normalization layers.
final_dropout (`bool` defaults to `False`):
Whether to apply a final dropout after the last feed-forward layer.
ff_inner_dim (`int`, *optional*, defaults to `None`):
Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used.
ff_bias (`bool`, defaults to `True`):
Whether or not to use bias in Feed-forward layer.
attention_out_bias (`bool`, defaults to `True`):
Whether or not to use bias in Attention output projection layer.
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
time_embed_dim: int,
motion_dim: int,
dropout: float = 0.0,
activation_fn: str = 'gelu-approximate',
attention_bias: bool = False,
qk_norm: bool = True,
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-5,
final_dropout: bool = True,
ff_inner_dim: Optional[int] = None,
ff_bias: bool = True,
attention_out_bias: bool = True,
cross_attention: bool = False,
):
super().__init__()
self.is_cross_attention = cross_attention
if self.is_cross_attention:
self.attn0 = Attention(
query_dim=dim,
cross_attention_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
qk_norm='layer_norm' if qk_norm else None,
eps=1e-6,
bias=attention_bias,
out_bias=attention_out_bias,
processor=CogVideoXAttnProcessor1_0(),
)
# 1. Self Attention
self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
self.attn1 = Attention(
query_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
qk_norm='layer_norm' if qk_norm else None,
eps=1e-6,
bias=attention_bias,
out_bias=attention_out_bias,
processor=CogVideoXAttnProcessor2_0(),
)
# 2. Feed Forward
self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
self.ff = FeedForward(
dim,
dropout=dropout,
activation_fn=activation_fn,
final_dropout=final_dropout,
inner_dim=ff_inner_dim,
bias=ff_bias,
)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
motion_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> torch.Tensor:
# norm & modulate
norm_hidden_states, gate_msa = self.norm1(hidden_states, temb)
# self attention
attn_hidden_states = self.attn1(
hidden_states=norm_hidden_states,
image_rotary_emb=image_rotary_emb,
)
hidden_states = hidden_states + gate_msa * attn_hidden_states
if self.is_cross_attention:
cross_attn_hidden_states = self.attn0(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
motion_rotary_emb=motion_rotary_emb,
)
hidden_states = hidden_states + cross_attn_hidden_states
# norm & modulate
norm_hidden_states, gate_ff = self.norm2(hidden_states, temb)
# feed-forward
ff_output = self.ff(norm_hidden_states)
hidden_states = hidden_states + gate_ff * ff_output
return hidden_states
class Transformer3DModel(ModelMixin, ConfigMixin):
"""
Parameters:
num_attention_heads (`int`, defaults to `30`):
The number of heads to use for multi-head attention.
attention_head_dim (`int`, defaults to `64`):
The number of channels in each head.
in_channels (`int`, defaults to `16`):
The number of channels in the input.
out_channels (`int`, *optional*, defaults to `16`):
The number of channels in the output.
flip_sin_to_cos (`bool`, defaults to `True`):
Whether to flip the sin to cos in the time embedding.
time_embed_dim (`int`, defaults to `512`):
Output dimension of timestep embeddings.
text_embed_dim (`int`, defaults to `4096`):
Input dimension of text embeddings from the text encoder.
num_layers (`int`, defaults to `30`):
The number of layers of Transformer blocks to use.
dropout (`float`, defaults to `0.0`):
The dropout probability to use.
attention_bias (`bool`, defaults to `True`):
Whether or not to use bias in the attention projection layers.
sample_width (`int`, defaults to `90`):
The width of the input latents.
sample_height (`int`, defaults to `60`):
The height of the input latents.
sample_frames (`int`, defaults to `49`):
The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49
instead of 13 because CogVideoX processed 13 latent frames at once in its default and recommended settings,
but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with
K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1).
patch_size (`int`, defaults to `2`):
The size of the patches to use in the patch embedding layer.
temporal_compression_ratio (`int`, defaults to `4`):
The compression ratio across the temporal dimension. See documentation for `sample_frames`.
max_text_seq_length (`int`, defaults to `226`):
The maximum sequence length of the input text embeddings.
activation_fn (`str`, defaults to `"gelu-approximate"`):
Activation function to use in feed-forward.
timestep_activation_fn (`str`, defaults to `"silu"`):
Activation function to use when generating the timestep embeddings.
norm_elementwise_affine (`bool`, defaults to `True`):
Whether or not to use elementwise affine in normalization layers.
norm_eps (`float`, defaults to `1e-5`):
The epsilon value to use in normalization layers.
spatial_interpolation_scale (`float`, defaults to `1.875`):
Scaling factor to apply in 3D positional embeddings across spatial dimensions.
temporal_interpolation_scale (`float`, defaults to `1.0`):
Scaling factor to apply in 3D positional embeddings across temporal dimensions.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
num_attention_heads: int = 30,
attention_head_dim: int = 64,
in_channels: int = 16,
out_channels: Optional[int] = 16,
flip_sin_to_cos: bool = True,
freq_shift: int = 0,
time_embed_dim: int = 512,
text_embed_dim: int = 4096,
motion_dim: int = 168,
num_layers: int = 30,
dropout: float = 0.0,
attention_bias: bool = True,
sample_width: int = 90,
sample_height: int = 60,
sample_frames: int = 49,
patch_size: int = 2,
temporal_compression_ratio: int = 4,
max_text_seq_length: int = 226,
activation_fn: str = 'gelu-approximate',
timestep_activation_fn: str = 'silu',
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-5,
spatial_interpolation_scale: float = 1.875,
temporal_interpolation_scale: float = 1.0,
use_rotary_positional_embeddings: bool = False,
):
super().__init__()
inner_dim = num_attention_heads * attention_head_dim # 48 * 64 = 3072
self.unconditional_motion_token = torch.nn.Parameter(torch.randn(312, 3072))
print(self.unconditional_motion_token[0])
# 1. Patch embedding
self.patch_embed = CogVideoXPatchEmbed(
patch_size=patch_size,
in_channels=in_channels,
embed_dim=inner_dim,
text_embed_dim=text_embed_dim,
bias=True,
sample_width=sample_width,
sample_height=sample_height,
sample_frames=sample_frames,
temporal_compression_ratio=temporal_compression_ratio,
max_text_seq_length=max_text_seq_length,
spatial_interpolation_scale=spatial_interpolation_scale,
temporal_interpolation_scale=temporal_interpolation_scale,
use_positional_embeddings=not use_rotary_positional_embeddings,
)
self.embedding_dropout = nn.Dropout(dropout)
# 2. Time embeddings
self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift)
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn) # 3072 --> 512
self.transformer_blocks = nn.ModuleList(
[
CogVideoXBlock(
dim=inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
time_embed_dim=time_embed_dim,
motion_dim=motion_dim,
dropout=dropout,
activation_fn=activation_fn,
attention_bias=attention_bias,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
cross_attention=True,
)
for _ in range(num_layers)
]
)
self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine)
# 4. Output blocks
self.norm_out = AdaLayerNorm(
embedding_dim=time_embed_dim,
output_dim=2 * inner_dim,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
chunk_dim=1,
)
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels)
self.gradient_checkpointing = False
def _set_gradient_checkpointing(self, module, value=False):
self.gradient_checkpointing = value
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, 'get_processor'):
processors[f'{name}.processor'] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f'{name}.{sub_name}', child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f'A dict of processors was passed, but the number of processors {len(processor)} does not match the'
f' number of attention layers: {count}. Please make sure to pass {count} processor classes.'
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, 'set_processor'):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f'{name}.processor'))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with
# FusedAttnProcessor2_0->FusedCogVideoXAttnProcessor2_0
def fuse_qkv_projections(self):
"""Enables fused QKV projections. For self-attention modules, all
projection matrices (i.e., query, key, value) are fused. For cross-
attention modules, key and value projection matrices are fused.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
self.original_attn_processors = None
for _, attn_processor in self.attn_processors.items():
if 'Added' in str(attn_processor.__class__.__name__):
raise ValueError('`fuse_qkv_projections()` is not supported for models having added KV projections.')
self.original_attn_processors = self.attn_processors
for module in self.modules():
if isinstance(module, Attention):
module.fuse_projections(fuse=True)
self.set_attn_processor(FusedCogVideoXAttnProcessor2_0())
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
def unfuse_qkv_projections(self):
"""Disables the fused QKV projection if enabled.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
if self.original_attn_processors is not None:
self.set_attn_processor(self.original_attn_processors)
def forward(
self,
hidden_states: torch.Tensor,
timestep: Union[int, float, torch.LongTensor],
timestep_cond: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
motion_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
motion_emb: Optional[torch.Tensor] = None,
camera_emb: Optional[torch.Tensor] = None,
need_broadcast: bool = True,
return_dict: bool = True,
):
batch_size, num_frames, channels, height, width = hidden_states.shape
# 1. Time embedding
timesteps = timestep
t_emb = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=hidden_states.dtype) # (2, 3072)
emb = self.time_embedding(t_emb, timestep_cond) # (2, 3072) --> (2, 512)
# 2. Patch embedding
hidden_states = self.patch_embed(hidden_states) # (2, 226+9450, dim=3072)
hidden_states = self.embedding_dropout(hidden_states)
image_seq_length = image_rotary_emb[0].shape[0]
motion_seq_length = motion_emb.shape[1] # 168
# hidden_states = hidden_states[:, motion_seq_length:]
encoder_hidden_states = motion_emb
# encoder_hidden_states = self.motion_proj(motion_emb)
# 3. Transformer blocks
for i, block in enumerate(self.transformer_blocks):
if self.training and self.gradient_checkpointing: # train with gradient checkpointing to save memory
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {}
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
emb,
image_rotary_emb,
motion_rotary_emb,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=emb,
image_rotary_emb=image_rotary_emb,
motion_rotary_emb=motion_rotary_emb,
)
# 4. Final block
hidden_states = self.norm_final(hidden_states)
hidden_states = self.norm_out(hidden_states, temb=emb)
hidden_states = self.proj_out(hidden_states)
# 5. Unpatchify
p = self.config.patch_size
output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, -1, p, p)
output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)