File size: 5,126 Bytes
4d35d05 a93106f 170c5f1 bad46c5 dbb92e9 170c5f1 1ab421e bad46c5 eaf6f50 1ab421e 7ce0c46 1ab421e 170c5f1 bad46c5 3476a0f 170c5f1 1743f62 170c5f1 3476a0f bad46c5 7ce0c46 01c0141 7ce0c46 01c0141 7ce0c46 01c0141 7ce0c46 01c0141 bad46c5 01c0141 7ce0c46 01c0141 7ce0c46 01c0141 7ce0c46 170c5f1 bad46c5 eb971e4 170c5f1 3476a0f bad46c5 170c5f1 bad46c5 170c5f1 bad46c5 01c0141 bad46c5 170c5f1 3476a0f 20981ee 3476a0f bad46c5 3476a0f bad46c5 01c0141 3476a0f bad46c5 01c0141 bad46c5 01c0141 3476a0f 20981ee bad46c5 3476a0f 01c0141 3476a0f 01c0141 3476a0f 01c0141 65871c9 01c0141 bad46c5 01c0141 170c5f1 01c0141 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse, JSONResponse
from pydantic import BaseModel
import pandas as pd
import os
import requests
from transformers import GPT2LMHeadModel, GPT2Tokenizer, AutoTokenizer, pipeline
from io import StringIO
from fastapi.middleware.cors import CORSMiddleware
from huggingface_hub import HfFolder
from tqdm import tqdm
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # You can specify domains here
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Access the Hugging Face API token from environment variables
hf_token = os.getenv('HF_API_TOKEN')
if not hf_token:
raise ValueError("Hugging Face API token is not set. Please set the HF_API_TOKEN environment variable.")
# Load GPT-2 model and tokenizer
tokenizer_gpt2 = GPT2Tokenizer.from_pretrained('gpt2')
model_gpt2 = GPT2LMHeadModel.from_pretrained('gpt2')
# Create a pipeline for text generation using GPT-2
text_generator = pipeline("text-generation", model=model_gpt2, tokenizer=tokenizer_gpt2)
def preprocess_user_prompt(user_prompt):
# Generate a structured prompt based on the user input
generated_text = text_generator(user_prompt, max_length=50, num_return_sequences=1)[0]["generated_text"]
return generated_text
# Define prompt template
prompt_template = """\
You are an expert in generating synthetic data for machine learning models.
Your task is to generate a synthetic tabular dataset based on the description provided below.
Description: {description}
The dataset should include the following columns: {columns}
Please provide the data in CSV format.
Example Description:
Generate a dataset for predicting house prices with columns: 'Size', 'Location', 'Number of Bedrooms', 'Price'
Example Output:
Size,Location,Number of Bedrooms,Price
1200,Suburban,3,250000
900,Urban,2,200000
1500,Rural,4,300000
...
Description:
{description}
Columns:
{columns}
Output: """
tokenizer_mixtral = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", token=hf_token)
def format_prompt(description, columns):
processed_description = preprocess_user_prompt(description)
prompt = prompt_template.format(description=processed_description, columns=",".join(columns))
return prompt
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"
generation_params = {
"top_p": 0.90,
"temperature": 0.8,
"max_new_tokens": 512,
"return_full_text": False,
"use_cache": False
}
def generate_synthetic_data(description, columns):
formatted_prompt = format_prompt(description, columns)
payload = {"inputs": formatted_prompt, "parameters": generation_params}
response = requests.post(API_URL, headers={"Authorization": f"Bearer {token}"}, json=payload)
return response.json()[0]["generated_text"]
def process_generated_data(csv_data, expected_columns):
try:
# Ensure the data is cleaned and correctly formatted
cleaned_data = csv_data.replace('\r\n', '\n').replace('\r', '\n')
data = StringIO(cleaned_data)
# Read the CSV data
df = pd.read_csv(data, delimiter=',')
# Check if the DataFrame has the expected columns
if set(df.columns) != set(expected_columns):
print(f"Unexpected columns in the generated data: {df.columns}")
return None
return df
except pd.errors.ParserError as e:
print(f"Failed to parse CSV data: {e}")
return None
def generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100):
data_frames = []
for _ in tqdm(range(num_rows // rows_per_generation), desc="Generating Data"):
generated_data = generate_synthetic_data(description, columns)
df_synthetic = process_generated_data(generated_data, columns)
if df_synthetic is not None and not df_synthetic.empty:
data_frames.append(df_synthetic)
else:
print("Skipping invalid generation.")
if data_frames:
return pd.concat(data_frames, ignore_index=True)
else:
print("No valid data frames to concatenate.")
return pd.DataFrame(columns=columns)
@app.route('/generate', methods=['POST'])
def generate():
data = request.json
description = data.get('description')
columns = data.get('columns')
num_rows = data.get('num_rows', 1000)
if not description or not columns:
return jsonify({"error": "Please provide 'description' and 'columns' in the request."}), 400
df_synthetic = generate_large_synthetic_data(description, columns, num_rows=num_rows)
if df_synthetic is not None and not df_synthetic.empty:
file_path = 'synthetic_data.csv'
df_synthetic.to_csv(file_path, index=False)
return send_file(file_path, as_attachment=True)
else:
return jsonify({"error": "Failed to generate a valid synthetic dataset."}), 500
if __name__ == "__main__":
app.run(host='0.0.0.0', port=8000)
|